
Escenic Content Engine

Advanced Developer Guide
5.6.13.183224

Table of Contents

1 Introduction.. 6

2 Section Parameters... 7

2.1 Setting Section Parameters in Web Studio..7

2.2 Setting Section Parameters using a Web Service... 8

2.2.1 Retrieving Section Parameters..8

2.2.2 Adding/Replacing Section Parameters..8

2.2.3 Removing All Section Parameters.. 9

2.3 Using Section Parameters..9

3 Content Item Field Indexes... 10

3.1 Specifying Content Item Field Indexes...10

3.2 Generating Content Item Field Indexes... 11

4 JSP Profiling.. 12

4.1 Enabling/Disabling Profiling.. 12

4.2 Controlling Output...12

4.2.1 Grouping by Template...13

4.2.2 Grouping Within Templates...13

4.2.3 Grouping By Section... 14

4.3 Viewing The Results...14

4.4 Understanding The Results..15

4.5 Collection Strategies...16

4.5.1 Micro-collection..16

4.5.2 Macro-collection...17

4.6 Extending Statistics Collection... 17

5 Cross-Publishing.. 18

5.1 Access Rights...18

5.2 Cross-Publishing Methods..19

5.2.1 Single Article Cross-Publishing... 19

5.2.2 Shadow Section Cross-Publishing.. 19

6 Metadata Extraction...20

6.1 Using The Standard Facility... 20

6.2 The Plug-in API.. 21

6.2.1 Metadata Injection Example.. 22

7 Servlet Filters...24

7.1 ECEProfileFilter.. 25

7.2 BootstrapFilter...25

7.3 TimerFilter...26

7.4 EscenicStandardFilterChain..27

7.4.1 The Filter Chain Processors..27

7.5 CacheFilter..34

7.6 Modifying The Filter Chain... 35

7.6.1 Modifying The Main Filter Chain... 36

7.6.2 Modifying The Escenic Standard Filter Chain...36

8 Decorators..40

8.1 Article decorators..40

8.1.1 Creating A Decorator.. 40

8.1.2 Creating a Decorator .properties File.. 42

8.1.3 Declaring a Decorator... 42

8.1.4 A Complex Decorator Example...42

8.2 Pool decorators.. 44

8.2.1 Create the Decorator .properties Files.. 45

8.2.2 Declare the Decorator... 45

8.3 Packaging Decorators.. 46

8.3.1 Deploy the Decorator.. 47

9 Event Listeners.. 48

9.1 Making An Event Listener.. 48

9.1.1 Handling Staged Content Item Events..52

9.1.2 Staged Content Items and Publishing Status..53

9.2 Using An Event Listener...53

10 Transaction Filters... 55

10.1 Making A Transaction Filter... 55

10.2 Using A Transaction Filter..57

10.3 Error Handling...58

11 Post-transaction Filters.. 59

11.1 Making a Post-transaction Filter...59

11.2 Using a Post-Transaction Filter..60

11.3 Error Handling...61

12 The web.xml File... 62

13 Publication Webapp Properties... 65

13.1 Viewing Publication Webapp Properties.. 65

13.2 Modifying Publication Webapp Properties..66

13.3 The default.properties File..66

14 CAPTCHA Support.. 67

14.1 Configuring a CAPTCHA Provider... 67

14.1.1 ReCaptcha...67

14.1.2 Jcaptcha.. 67

14.1.3 Custom CAPTCHA Provider... 68

14.2 Displaying Your CAPTCHA Challenge...68

14.3 Verifying the CAPTCHA Response.. 69

15 Mail a form...70

15.1 Create the form.. 70

15.2 edit struts-config.xml...71

16 Representations... 72

16.1 Defining Image Representations.. 72

16.1.1 Derived Representations... 73

16.2 Accessing Image Representations... 74

17 Restricting Access to Content... 76

17.1 Basic Password Authentication Example... 77

17.1.1 Using The Example...79

17.2 Removing Access Control.. 79

18 Collection Fields.. 80

18.1 Defining and Using a Collection Field..80

18.2 Using Your Own Feeds..82

18.2.1 Making an OpenSearch-based Feed.. 83

18.2.2 Feed and OpenSearch MIME Types...85

18.3 Using a Content Engine Proxy Service..86

19 Content Engine Proxy Services...87

19.1 Defining a Proxy Service..87

19.2 Defining a Proxy Service Filter...88

20 Using Solr.. 90

20.1 What Gets Indexed...90

20.1.1 Standard Fields... 90

20.1.2 Content Type-dependent Fields.. 91

20.1.3 Tag-related Fields..92

20.2 How It Is Indexed... 92

20.3 Example Searches..92

20.3.1 Faceted Searching.. 93

21 Content Item Staging...95

21.1 Disabling Content Item Staging..95

21.2 Requirements..96

22 Further Reading...97

22.1 Escenic Resources... 97

22.2 Other Resources...97

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 6

1 Introduction

This guide is intended to describe various advanced development techniques for Escenic developers
who are already familiar with the content of the Escenic Content Engine Template Developer
Guide.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 7

2 Section Parameters

A section parameter is a freely-definable key-value pair that can be assigned to a section using Web
Studio. For example:

global_bgcolor=#2661DD

Section parameters are inherited, so if the above parameters are assigned to the root section of a
publication, then they will apply to the whole publication by default. However, you can redefine
the parameters in a subsection; these new settings will override the inherited ones and apply to the
subsection and all its subsections, as shown below:

global-bgcolor= blue

global-bgcolor= yellow

global-bgcolor= green

Section parameters can be used to:

• Differentiate the sections in a publication without the need for writing many different section
templates.

• Give publication administrators a simple means of control over the appearance/behaviour of the
sections in a publication.

2.1 Setting Section Parameters in Web Studio
To set a section parameter in Web Studio you must have section administrator rights. From the Web
Studio home page:

1. Select SECTIONS.

2. Select the Administer link next to the section you are interested in.

3. Select Edit section parameters.

4. Enter the parameter settings you want to add in the displayed Properties pane.

5. Select Save.

When choosing names for your section parameters, you should avoid characters that have special
meanings in JSTL (. and -, for example), as this complicates referencing them in your templates.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 8

2.2 Setting Section Parameters using a Web Service
escenic-admin includes a web service for manipulating section parameters. The section parameters
for a specific section of a publication can be accessed via a URL like this:

http://server-name:port/escenic-admin/section-parameters-declared/publication/section-
path

where:

publication
is the name of the publication

section-path
is the path of the required section, for example /some/path/to/my/section.

2.2.1 Retrieving Section Parameters

To retrieve a section's parameters, send an HTTP GET request to the appropriate web service URL:

curl http://server-name:port/escenic-admin/section-parameters-
declared/publication/section-path

This returns a list of all of the section's declared section parameters. The parameters are returned as
plain text, not HTML or XML. For example:

#Declared section parameters for section Escenic Times(22)
#Thu Mar 01 12:18:43 CET 2012
news.uniqueName=news
groupprofile.uniqueName=profile
wireFrame=default
templateVersion=v0
pageTitle=Glace
imagefile.uniqueName=images
userprofile.uniqueName=profile
forumId=162

2.2.2 Adding/Replacing Section Parameters

To add parameters to a section or change current settings:

1. Create a text file containing the parameters you want to add/modify. Each parameter setting
must be specified on a separate line and be specified in the form:

name=value

2. Save the file under any name you choose (for example news.parameters)

3. Submit the file to the appropriate web service URL using either POST or PUT. For example:

curl -X POST http://server-name:port/escenic-admin/section-parameters-
declared/publication/section-path \
--upload-file news.parameters

If you use POST then the contents of your file are merged with the section's existing parameters
(that is, new parameters are added, existing parameters are overwritten with new values and
any existing parameters not in the submitted file are left unchanged). If you use PUT then the
contents of the submitted file completely replace all existing parameters.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 9

2.2.3 Removing All Section Parameters

To remove all of a section's parameters , send an HTTP DELETE request to the appropriate web service
URL:

curl -X DELETE http://server-name:port/escenic-admin/section-parameters-
declared/publication/section-path

2.3 Using Section Parameters
Section parameters can be accessed in templates using the Section bean's parameters property as
follows:

${section.parameters.global_bgcolor}

With this example section parameter you can create templates that allow different background colors
to be used in each section, for example:

<table
 bgcolor="${section.parameters.global_bgcolor}"
 width="800"
 cellspacing="3"
 cellpadding="3"
 border="0">
...
<table>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 10

3 Content Item Field Indexes

The article:list tag returns a java.util.List bean containing all the content items in
a publication that match various criteria. You can use it, for example, to list the last ten content
items added to a specific section, or all the content items published in the last three days. The
article:list tag also has a field attribute that you can use for selecting and sorting the content
items to list by field value. If, for example, the content items in your publication have a priority
field, you might want to obtain a list of all content items with a priority of 1. You can do this as follows:

<article:list
 id="myList"
 sectionUniqueName="mySection"
 field="priority"
 expression="1" />

You can, however, only use the link attribute on content item fields that have been indexed. If the
priority field is not indexed, then this example will not work.

3.1 Specifying Content Item Field Indexes
Content item field indexes are specified in the content-type resource. In order to be able to index
any of the fields in a content type, you must add a neo.xredsys.service.article.attribute
parameter to the content type definition:

<content-type>
...
 <parameter name="neo.xredsys.service.article.attribute" value="true"/>
</content-type>

Once you have done this, you can specify indexing of individual fields within the content type by
adding neo.xredsys.service.article.attributeField parameters to the field definitions:

<field name="priority" type="number">
 ...
 <parameter name="neo.xredsys.service.article.attributeField" value="priority"/>
</field>

Note that the value attribute is set to the name of the field that is to be indexed. The
neo.xredsys.service.article.attributeField parameter actually determines the name
that you will need to use to identify the indexed field in the article:list tag. You could set it to
some other name, but you are advised not to do so.

If white space is significant in the indexed field, then you should also add a
neo.xredsys.service.article.attributeField.notrim parameter as follows:

<field name="formatted" type="basic">
 ...
 <parameter name="neo.xredsys.service.article.attributeField" value="priority"/>
 <parameter name="neo.xredsys.service.article.attributeField.notrim" value="true"/>
</Field>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 11

If you do not specify this parameter then for indexing purposes all leading and trailing white space will
be trimmed from the field, and all internal white space will be normalized to a single space character.

3.2 Generating Content Item Field Indexes
If you add new content item field indexes to an existing publication, then you will need to explicitly
generate the indexes for all existing content items. To do this:

1. Go the Escenic Web Administration interface.

2. Select List pubs.

3. Select the publication you have modified.

4. Select Run field indexer.

The new field will be indexed automatically in any content items subsequently added to the
publication.

Note the following:

• Some changes to content types can cause existing indexes to get out of sync. You can correct (or
avoid) such problems by running the field indexer after modifying content type definitions.

• Indexing can be very time-consuming, and can have a significant effect on database
performance.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 12

4 JSP Profiling

The Content Engine incorporate a JSP profiling facility that can be useful for tuning purposes. It
collects information about the time used by each of the templates in a publication, enabling you to
identify the hot spots that you should concentrate on if you want to improve performance. The
facility not only collects information about how much time is spent in each template, but also the
database queries and updates performed by each template and the amount of memory allocated by
each template.

You can also, if necessary, obtain more detailed information about where the time is being spent in
a particular template by dividing the template into sections using util:profiler tags (see section
4.2.2). The same information will then be generated for each section of the template, enabling you to
pinpoint problem code more exactly.

4.1 Enabling/Disabling Profiling
Profiling is not enabled by default, because it incurs a small (less than 1%) performance
penalty. You can turn profiling on by setting the application scope attribute
neo.util.servlet.RequestInfo.StatisticsSource as follows:

<%
 pageContext.getServletContext().setAttribute("neo.util.servlet.RequestInfo.StatisticsSource",
 neo.nursery.GlobalBus.lookupSafe("/neo/io/reports/ReportsStatisticsSource"));
%>

To turn profiling off again, simply remove the attribute as follows:

<%
 pageContext.getServletContext().removeAttribute("neo.util.servlet.RequestInfo.StatisticsSource");
%>

You want to be able to turn profiling on and off at will during template development without exposing
the option to users of the publication. A simple way of doing this is to add two JSP files containing
these commands to your application: profiling-on.jsp and profiling-off.jsp, for example.
You can then easily turn profiling on and off by navigating to these files in your browser. To turn
profiling on, for example, you would enter something like this in your browser's address field:

http://server-name:port/publication/template/profiling-on.jsp

and something like this to turn it off again:

http://server-name:port/publication/template/profiling-off.jsp

where publication is the name of your publication.

4.2 Controlling Output
By default, the profiling facility will group the statistics it collects by publication and template: that is,
it will generate one group of statistics for each publication on the server, with subgroups within each

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 13

publication for each template. This means you can see how much time is used in a particular template
for a particular document, how many database accesses each template generates and so on.

You may, however, want to break down the statistics for some templates even more, so that you can
see exactly where in a template some problem is arising. You might also want to break the statistics
for a publication down by section. On the other hand, you might not be interested in template-level
statistics and want to simplify the output grouping.

The following sections describe how you can achieve these objectives.

4.2.1 Grouping by Template

Profiling results are automatically grouped by template. This level of grouping is carried out by a filter
in the servlet filter chain. If, for any reason you do not want the results to be grouped in this way you
can prevent template grouping by removing the ECEProfileFilter from the filter chain. For further
information about this filter, see section 7.1.

Note that the default template grouping provided by ECEProfileFilter depends on you using
jsp:include to transfer control between templates. If you use any other means of transferring
control, then you will need to explicitly redirect profiling output to a new group yourself by wrapping
template content in a util:profiler tag as follows:

<%@ page language="java" pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"
 %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="/WEB-INF/escenic-util.tld" prefix="util" %>

<util:profiler path="/wireframe/default.jsp">
 ...template contents...
</util:profiler>

You are recommended, however, to use jsp:include: this explicit grouping will then not be
necessary.

4.2.2 Grouping Within Templates

You can use util:profiler to break down profiling output within templates as follows:

<%@ page language="java" pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"
 %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="/WEB-INF/escenic-util.tld" prefix="util" %>

...[1]...
<util:profiler fragment="navigation">
 ...[2]...
 <util:profiler fragment="switch1">
 ...[3]...
 </util:profiler>
 ...[4]...
 <util:profiler fragment="switch2">
 ...[5]...
 </util:profiler>
 ...[6]...
</util:profiler>
...[7]...

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 14

If the example is called /wireframe/default.jsp, then this will give the following entries in your
profiling output:

/wireframe/default.jsp
containing output for code blocks [1] and [7]

/wireframe/default.jsp[navigation]
containing output for code blocks [2], [4] and [6]

/wireframe/default.jsp[switch1]
containing output for code block [3]

/wireframe/default.jsp[switch2]
containing output for code block [5]

4.2.3 Grouping By Section

You can generate a results group for every section in each publication (rather than just a group for each
publication by including something like this in your outermost template (usually common.jsp):

<%@ taglib uri="/WEB-INF/escenic-util.tld" prefix="util" %>
<%@ taglib uri="http://struts.apache.org/tags-bean" prefix="bean" %>

<bean:define id="groupName">
 ${publication.name}.${section.name}
</bean:define>

<%
 pageContext.getServletContext().setAttribute("neo.util.servlet.RequestInfo.StatisticsSource",
 neo.nursery.GlobalBus.lookup("/neo/io/reports/ReportsStatisticsSource"));
 request.setAttribute("neo.util.servlet.RequestInfo.group", groupName);
%>

This code sets the request scope variable neo.util.servlet.RequestInfo.group, which
determines the group to which output is directed.

4.3 Viewing The Results
Once you have set the neo.util.servlet.RequestInfo.StatisticsSource attribute and the
publication has been accessed, there should be some results available. To view them:

1. Go to the web administration interface.

2. Select View JSP Statistics.

3. The displayed page will at least contain a link called other. If you set the
neo.util.servlet.RequestInfo.group to the name of your publication then the
publication name should appear there as well.

4. Select the appropriate link. You should then see a display something like this:

These tables display results for the top 5 templates in each of four categories (DB queries, DB updates,
memory and time). You can display a complete table for one of the categories by clicking on the link
above the table: to display a complete memory table, for example, click on memory in the Top 5
memory usage heading. To display more detailed information about a particular template, click on
one of the links in the uri columns of the tables.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 15

To zero all the results, click on the Reset link at the bottom of the page.

4.4 Understanding The Results
Profiling information is collected for the following resources:

dbqueries
The number of database queries performed.

dbupdates
The number of database updates performed.

memory
The amount of memory allocated, in bytes. Note that this is an approximation since the
Java virtual machine (JVM) does not provide a reliable standard method of retrieving this
information.

time
Elapsed time, in milliseconds. Note that on some Windows systems, clock ticks have a length of
approximately 16ms, so that all recorded times will be multiples of around 16 milliseconds.

The profiling information for all of these resources is calculated as follows:

1. Measure the resource on entry to the template.

2. Measure the resource on exit from the template.

3. Subtract one value from the other to give the template's gross consumption of that resource.

4. Subtract from this value the gross consumption of all the template's called templates in order to
produce its net consumption.

This method is good enough for most purposes but has some weaknesses that you should be aware of:

• Since only elapsed time is counted, no account is taken of time-consuming "external" processes,
such as garbage collection, memory contention, other threads and so on. This may occasionally
cause a template to appear to use a large amount of time, when in fact the time has been used by an
external process.

• Similarly, if garbage collection is carried out while a template is running, it may result in a template
apparently using a negative amount of memory. You will never see this in the final results, since
such values are set to 0. Nevertheless, it means that the memory usage information is not entirely
accurate.

In general, this means that profiling is of little use on a machine that is heavily overloaded.

The statistics are presented in tables with the following columns:

uri
The URI of the monitored template.

total resource
The total amount of resource consumed by the template during the profiling period. The table
is sorted by this column, so that the template with the highest consumption is listed first. It is
usually this template that you will be most interested in.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 16

invoked
The number of times the template was invoked. Some templates may be called several times per
page-view; others may not be called at all.

best
The lowest consumption value recorded for the template. This column is particularly significant
because gives an indication of the template's best possible performance, given optimal
conditions.

avg
The template's average consumption per invocation: total divided by invoked.

worst
The highest consumption value recorded for the template. This figure should be treated with
caution because it can easily be distorted by external processes such as garbage collection,
memory contention or JSP compilation.

4.5 Collection Strategies
There a two basic ways you can use the statistics collection facility, called micro-collection and
macro-collection here.

4.5.1 Micro-collection

This approach is suitable for detailed analysis of specific templates when you already have some idea
of what your problem is and you know approximately what you are looking for. You can only really use
this approach on a test or development server over which you have full control. The general procedure
is as follows:

1. Prepare for the specific action you want to test. For example, start a browser and navigate to a
specific location in the publication.

2. Switch statistics collection on by running your statistics-on.jsp file.

3. In a separate browser window or tab navigate to the web administration interface. Select the
Clear all caches option to empty the Content Engine's caches.

4. Select View JSP statistics followed by the name of the publication you are interested. This
displays the statistics page for that document.

5. Select the Reset link at the bottom of the page to clear old statistics.

6. Click Back to redisplay the main page.

7. In the other browser window/tab, perform the action you want to investigate - often just a single
page display.

8. Switch statistics collection off by running your statistics-off.jsp file.

9. Back in the administration interface, redisplay the statistics for your publication. You now have a
set of statistics for the action you just performed.

Statistics collected in this way give you a good basis for detailed analysis of particular templates. You
might, for example, see that the action you performed has caused a particular template to be invoked
many times more than you expected, or generated far more database queries than you expected.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 17

4.5.2 Macro-collection

This approach is suitable for getting a general impression of where problems might be arising in a
system, and is really the only approach that can be used on a production server. It is difficult to collect
reliable statistics for a single operation on a production server because the chances of operations being
affected by external processes such as competing threads and garbage collection are much higher.
What you can do, though is simply gather statistics over a period of time (5 minutes say, or half an
hour) on the assumption that such distortions will average out. You can then get a general impression
of where most resources are used in your publication.

The procedure in this case is:

1. In the web administration interface, select the Clear all caches option to empty the Content
Engine's caches.

2. Select View JSP statistics followed by the name of the publication you are interested. This
displays the statistics page for that document.

3. Select the Reset link at the bottom of the page to clear old statistics.

4. Click Back to redisplay the main page.

5. Switch statistics collection on by running your statistics-on.jsp file.

6. Wait.

7. Switch statistics collection off by running your statistics-off.jsp file.

8. Redisplay the statistics for your publication.

4.6 Extending Statistics Collection
The statistic collection facility is based on a public API, so you can extend it to gather other kinds of
statistics if you need to.

To be supplied.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 18

5 Cross-Publishing

Cross-publishing means allowing content items in one publication to also appear in sister
publications served by the same Content Engine.

The Content Engine fully supports cross-publishing: borrowed content items adopt the layout of
the publication section in which they appear and are indistinguishable from native content items.
There are, however, a few restrictions that must be observed in order to ensure problem-free cross-
publishing. Publications can only borrow content items from each other if:

• They have identical content types. This means that the content types in both publications must
have:

• identical names

• Identical fields with identical names

• They have identical image versions/representations. This means that the image versions and/or
image representations in both publications must have:

• identical names

• Identical sizes

You can set up cross-publishing so that editorial staff not only have access rights to content items in a
sister publication, but editorial rights too (that is, they will be allowed to modify content items in the
sister publication). In this case the publications must have identical layout definitions. Note, however,
that editorial staff can never create content in anything other than their home publication, whatever
access rights they have in other publications.

Cross-publishing does not require identical templates, only identical content-type, image-
version and layout-group publication resources. Nor does the use of cross-publishing
have any consequences for the template developer. Given identical publication resources, cross-
publishing is an administration/editorial issue, and can be set up using Web Studio.

5.1 Access Rights
In order to enable cross-publishing, the administrator of a "lending" publication A must assign access
rights to users of the "borrowing" publication B. The procedure is as follows:

1. Export users from publication B.

2. Import users to publication A.

3. Assign publication A access rights to the imported users. The imported users can be assigned
access to the whole publication or only to restricted sections. If publication B staff are only to be
allowed to borrow publication A content items, then they should be given reader access. If they
are to be allowed to modify content items, then they should be given journalist/editor access.

4. If shadow section cross-publishing (see section 5.2.2) is to be allowed, set the shared property of
the sections that are to be shadowed.

Once access rights have been assigned, editorial staff on publication B will be able to see the parts of
publication A to which they have access when using Content Studio.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 19

5.2 Cross-Publishing Methods
There are two methods of cross-publishing:

• Single content item cross-publishing

• Shadow section cross-publishing

5.2.1 Single Article Cross-Publishing

To cross-publish a single content item, a user in the borrowing publication simply searches for the
required content item in the usual way, and uses it as if it were a native content item.

5.2.2 Shadow Section Cross-Publishing

If any of the accessible sections in the lending publication are shared, then it is possible to create
shadow sections in the borrowing publication that automatically reflect all the content of the source
section. Cross-published shadow sections behave in exactly the same way as locally-sourced shadow
sections.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 20

6 Metadata Extraction

The Escenic Content Engine incorporates a metadata extraction facility that can extract the
metadata embedded in some types of binary file and automatically inject it into content item fields.
The standard facility supplied with the Content Engine supports the extraction of EXIF and IPTC
metadata embedded in JPEG image files. The type of information typically embedded in this way
includes items such as the photographer's name, copyright information, the date a photograph was
taken and so on.

The metadata extraction facility incorporates a plug-in interface, which Java programmers can use to:

• Control the metadata extracted

• Control how extracted metadata is injected into content items

• Add support for other binary file formats and metadata formats.

6.1 Using The Standard Facility
The metadata extraction facility only works with content items that contain a link field referencing
a binary object. That is, the content type definition in the content-type resource must contain
a field in which the type attribute is set to link. In addition, the default facility currently only
provides support for JPEG image files: other image file formats and other media objects such as audio
and video files are not currently supported.

The metadata extraction facility does not support legacy image and media content types.

To make use of the default extraction facility, you must:

• Add the following line to configuration-root/com/escenic/storage/metadata/
MetadataInjectionTransactionFilter.properties in one of your configuration layers:

serviceEnabled=true

You might need to create the file and directories.

• Add a field called COM.ESCENIC.DEFAULTMETADATA to the content type definition in the
content-type resource. The new field must be a complex array composed of two sub fields called
KEY and VALUE. Both KEY and VALUE must be basic fields.

The following example shows a content type definition for image files to which a default metadata
field has been added (highlighted in bold).

 <content-type name="image">
 <ui:label>Picture</ui:label>
 <ui:description>An image</ui:description>
 <ui:title-field>name</ui:title-field>
 <panel name="default">
 <ui:label>Image content</ui:label>
 <field mime-type="text/plain" type="basic" name="name">
 <ui:label>Name</ui:label>
 <ui:description>The name of the image</ui:description>
 <constraints>
 <required>true</required>
 </constraints>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 21

 </field>
 <field mime-type="text/plain" type="basic" name="description">
 <ui:label>Description</ui:label>
 </field>
 <field mime-type="text/plain" type="basic" name="alttext">
 <ui:label>Alternative text</ui:label>
 </field>
 <field name="binary" type="link">
 <relation>com.escenic.edit-media</relation>
 <constraints>
 <mime-type>image/jpeg</mime-type>
 <mime-type>image/png</mime-type>
 </constraints>
 </field>
 <field name="COM.ESCENIC.DEFAULTMETADATA" type="complex">
 <array default="0"/>
 <complex>
 <field name="KEY" type="basic" mime-type="text/plain"/>
 <field name="VALUE" type="basic" mime-type="text/plain"/>
 </complex>
 </field>
 </panel>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="caption" type="basic" mime-type="text/plain"/>
 <field name="alttext" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

Whenever a content item is created based on such a content type definition, and the binary content
referenced is a JPEG file, then any EXIF or IPTC metadata found in the file is automatically extracted
and injected into the COM.ESCENIC.DEFAULTMETADATA field. An array element is created for each
metadata item: the name of the item is injected into the KEY subfield and the content of the item is
injected into the VALUE subfield.

If you want better control over this process (if, for example, you want to select what metadata items
are injected and to inject them into specific fields), then you will need to create your own plug-in. For a
description of how to this, see section 6.2.

6.2 The Plug-in API
The metadata extraction plug-in API allows you to create plug-ins for both metadata extraction
(reading metadata from files) and metadata injection (inserting metadata into content item fields).
Both processes are managed by the MetadataService class, which delegates the actual work to type-
specific plug-ins.

Metadata extraction is performed by implementations of the StreamMetadataExtractor interface.
Metadata injection is performed by implementations of the ContentMetadataInjector interface.

The plug-in API uses the Service Provider facility as described in the JAR file specification for
discovery of plug-ins (see http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Service
%20Provider).

A plug-in, then, usually consists of a single JAR file containing:

http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Service%20Provider
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Service%20Provider

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 22

• One or more implementation classes

• A service provider (Spi) class for each implementation

Each service provider class is responsible for instantiating the corresponding implementation class.

Metadata Extraction and Storage Plug-ins

The Content Engine also supports plug-in implementations of the Storage interface, which allows
developers to add support for different file storage back ends. Third-party implementations of
Storage should ideally provide a storage-specific StorageMetadataExtractor implementation in
order to enable the use of metadata stored outside the data stream itself (usually file attributes such as
size, last modification date and so on).

6.2.1 Metadata Injection Example

This example metadata injection plug-in inserts the standard IPTC Caption/Abstract field into a
content item's caption field. The plug-in consists of the following items:

• An implementation of the ContentMetadataInjector interface called
CustomMetadataInjector.

• A corresponding Spi class called CustomMetadataInjectorSpi that extends
ContentMetadataInjectorSpi.

• A resource file to configure the plug-in.

6.2.1.1 The Implementation Class

The following listing shows the content of example/CustomMetadataInjector.java, which
does the actual injection. It is a very simple example but could easily be extended to inject more fields,
or even automatically look up the fields in content items, and inject data into fields with names that
match metadata field names.

Note that the class extends AbstractMetadataBase. This saves some work implementing the
provider-specific details.

package example;

import neo.xredsys.api.ArticleTransaction;
import neo.xredsys.content.type.Field;

class CustomMetadataInjector extends AbstractMetadataBase implements
 ContentMetadataInjector {
 static final String CAPTION_FIELD_NAME = "CAPTION";

 CustomMetadataInjector(final DefaultMetadataInjectorSpi pProvider) {
 super(pProvider);
 }

 public void inject(ArticleTransaction pContent, Map<String, List<Object>> pMetadata)
 {
 Field defaultMetadataField =
 pContent.getArticleType().getField(CAPTION_FIELD_NAME);
 List<Object> captions = pMetadata.get("Caption/Abstract"); // Standard IPTC field
 if (defaultMetadataField != null && captions != null) {

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 23

 pContent.setFieldValue(METADATA_FIELD_NAME, toNLSV(captions));
 }
 }

 private static String toNLSV(final List<Object> pValues) {
 StringBuilder buffer = new StringBuilder();
 for (Object value : pValues) {
 if (buffer.length() > 0) {
 buffer.append("\n ");
 }
 buffer.append(value);
 }
 }
 return buffer.toString();
}

6.2.1.2 The Spi Class

The following listing shows the content of example/CustomMetadataInjectorSpi.java.

package example;

import com.escenic.storage.metadata.spi.ContentMetadataInjectorSpi;

public class CustomMetadataInjectorSpi extends ContentMetadataInjectorSpi {
 public CustomMetadataInjectorSpi() {
 super("Example Inc.", "1.0");
 }

 public ContentMetadataInjector createMetadataInjector() {
 return new CustomMetadataInjector(this);
 }
}

6.2.1.3 The Resource File

The following listing shows the content of /META-INF/services/
com.escenic.storage.metadata.spi.ContentMetadataInjectorSpi.

example.CustomMetadataInjectorSpi

6.2.1.4 Deploying The Plug-in

To deploy the plug-in:

1. Compile the Java source files.

2. Package the resulting class files and the resource file together in a JAR file.

3. Add the JAR file to the classpath.

4. Restart the Content Engine.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 24

7 Servlet Filters

Servlet filters are Java programs that can be wrapped around a J2EE servlet in order to modify:

• Inbound requests

• Outbound responses

Servlet filters are easy to write and provide a simple mechanism by which common functionality can
be encapsulated for re-use in different contexts. They have standardized input/output interfaces which
allows them to be assembled into chains. An inbound request can be passed through a chain of filters
to prepare it for processing by a servlet. The response generated by the servlet is then passed back as
a return value through the same filter chain. This means that each filter in the chain can be used to
modify the inbound request or the outbound response or both.

The servlet filters used by a particular web application and the order in which they are called is defined
in the application's WEB.XML.

Servlet filters play an important role in Escenic applications. Most importantly, servlet filters are used
to:

• Parse incoming request URLs

• Create the section and article beans needed to generate appropriate responses

• Add the created beans to the request as request scope attributes

A standard set of filters is supplied with the Content Engine, along with a default WEB.XML file that
specifies:

• The filters to be used

• The parameters required by the filters

• The order in which the filters are to be called

You can modify the default filter chain by inserting filters of your own, either in addition to the
standard filters or as replacements for them. Some possible reasons for modifying the filter chain
might be:

• You want to use a custom algorithm to derive the publication name from the content of the request
URI

• You want to transform responses returned to certain types of devices (reformat them for small
screens, for example)

• You want to carry out cache filtering

In order to be able to do this successfully, you need to know what the standard filters delivered with
the Content Engine do, and how they are organized.

If you look in the default WEB.XML supplied with the Content Engine, you will see that the Escenic
filter chain contains the following filters:

• ECEProfileFilter

• BootstrapFilter

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 25

• TimerFilter

• EscenicStandardFilterChain

• CacheFilter

They are described in the following sections.

7.1 ECEProfileFilter
The ECEProfileFilter filter ensures that profiling output is grouped by template. Note, however,
that it only works when jsp:include is used to transfer control between templates. For general
information about Escenic profiling, see chapter 4.

The ECEProfileFilter is configured in WEB.XML as follows:

<filter>
 <filter-name>ECEProfileFilter</filter-name>
 <filter-class>com.escenic.servlet.ECEProfileFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>ECEProfileFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>

Note that the filter element must be followed by a filter-mapping element defining how the
filter is to be applied.

Configuration Parameters

This filter has no configuration parameters.

Request Scope Attributes

This filter sets no request scope attributes.

7.2 BootstrapFilter
The BootstrapFilter is intended to protect the Content Engine from traffic during startup. When
the Content Engine is started or restarted, its bootstrap service primes the system by sending fake
requests to itself. These requests force the Content Engine to initialize various subsystems, load
content from the database and so on, until the system is fully operational and ready to respond to
requests at full speed.

While this process is underway, the BootstrapFilter only passes through requests from the
bootstrap service. For all other requests it returns an HTTP 503 response (Service Unavailable).

The BootstrapFilter is configured in WEB.XML as follows:

<filter>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 26

 <filter-name>BootstrapFilter</filter-name>
 <filter-class>
 com.escenic.presentation.servlet.BootstrapFilter
 </filter-class>
 <init-param>
 <param-name>oncePerRequest</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>

Configuration Parameters

oncePerRequest
If set to true, then the filter is only executed for the initial request. If set to false, then the
filter is executed for every request, which on some servers may mean that it is re-applied each
time an include operation calls a new JSP file.

Request Scope Attributes

This filter sets no request scope attributes.

7.3 TimerFilter
The TimerFilter has the following functions:

• Measuring template performance

• Throttling requests should the server be overloaded

• Recording all requests along with their start and end time

The throttling function is carried out by the Escenic throttling service, /neo/io/services/
JspThrottleService. If the number of concurrent requests exceeds a specified maximum, then the
throttling service informs TimerFilter, which rejects any excess requests by returning HTTP 503
(Service Unavailable) responses.

The TimerFilter is configured in WEB.XML as follows:

<filter>
 <filter-name>TimerFilter</filter-name>
 <filter-class>neo.servlet.TimerFilter</filter-class>
 <init-param>
 <param-name>collector</param-name>
 <param-value>/neo/io/reports/HitCollector</param-value>
 </init-param>
</filter>

Configuration Parameters

collector
The component path of the hit collector that records all requests to the publication. The default
value is /neo/io/reports/HitCollector.

Request Scope Attributes

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 27

This filter sets no request scope attributes.

7.4 EscenicStandardFilterChain
The EscenicStandardFilterChain is different from all the other filters specified in WEB.XML.
It is not a single filter, but a chain of "subfilters" called processors. Most of the important filter
functionality is actually performed by the processors in this chain. The reason that the filters have been
packed together like this is as follows:

• New releases of the Content Engine sometimes involve changes to this part of the filter chain,
needed to support new functionality.

• WEB.XML is part of the publication application, not the Content Engine.

• If all the processors were not packed into this single "master filter", then upgrading to new versions
of the Content Engine would often require customers to make changes to their WEB.XML file(s).

The EscenicStandardFilterChain is configured in WEB.XML as follows:

<filter>
 <filter-name>EscenicStandardFilterChain</filter-name>
 <filter-class>com.escenic.presentation.servlet.CompositeFilter</filter-class>
 <init-param>
 <param-name>oncePerRequest</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>chain</param-name>
 <param-value>/com/escenic/servlet/StandardFilter</param-value>
 </init-param>
</filter>

Configuration

oncePerRequest
If set to true, then the filter is only executed for the initial request. If set to false, then the
filter is executed for every request, which on some servers may mean that it is re-applied each
time an include operation calls a new JSP file.

chain
The path of the component that manages the chain of processors. There is no default value for
this parameter: it must be specified, and should normally be set to /com/escenic/servlet/
StandardFilter.

Request Scope Attributes

This filter sets no request scope attributes itself. However, the filter chain processors it executes do set
request scope attributes. See the descriptions of the individual processors for details.

7.4.1 The Filter Chain Processors

The main practical difference between the processors called by EscenicStandardFilterChain and
ordinary servlet filters is that they are not configured in WEB.XML.

Configuring The Filter Chain Sequence

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 28

The sequence of processors executed by EscenicStandardFilterChain is defined in a system
file called StandardFilter.properties. For information on modifying the standard processor
sequence, see section 7.6.2

Configuring The Processors

The standard way to configure a processor is to create a file called component-name.properties
file in your publication's WEB-INF/localconfig folder and add a name=value property setting
to it. A few of the most commonly-used properties can also be set more simply by creating a
default.properties file in WEB-INF/localconfig and adding a similar name/value pair to
this file. For a detailed description of how to configure these processors and other publication web
application components, see chapter 13.

The following processor descriptions list all the properties that can be set for each processor.

Processor Descriptions

The processors are described in the following sections. The descriptions contain the following sections:

Component Name
The name of the component that implements the processor functionality.

Description
A general description of the processor.

Configuration
Describes properties that you can set to can modify the behavior of the processor (see
Configuring Processors above). If there is a default.properties parameter for setting a
property, then this is described as well.

Input Request Scope Attributes
The request scope attributes read by the filter.

Output Request Scope Attributes
The request scope attributes written by the filter, and what they are used for.

7.4.1.1 PublicationResolverProcessor

Component Name

/com/escenic/servlet/PublicationResolverProcessor

Description

This processor attempts to find out the name of the publication the request should be directed to. It
does this by applying the following rules:

1. If the request scope attribute com.escenic.publication.name is already set, then this
value is kept. This means that you can override this processor by inserting your own filter before
the EscenicStandardFilterChain and setting com.escenic.publication.name. You
might, for example, choose to set the publication name based on the host name in the request
URL.

2. If the processor's publicationName property has been set, then this value is used.

3. If the publicationName property is not defined, then the web application context path is used
(minus the initial slash).

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 29

4. If the application server's context root is empty, (in other words, the web application is mounted
on the root context), then com.escenic.publication.name is not set.

The usual case is that the publication name is used as the web application context
path so that the publicationName property does not need to be set and rule 3 sets
com.escenic.publication.name.

If no publication name can be determined then com.escenic.publication.name is not set. In
this case the remaining processors in the chain do nothing, and the request is handled by the servlet
container.

Configuration

The following property can be defined in WEB-INF/localconfig/com/escenic/servlet/
PublicationResolverProcessor.properties:

publicationName
The name of the publication. If not set, the web application's context path is used as the
publication name. This property can also be set by adding a publication-name parameter to
/WEB-INF/localconfig/defaults.properties (see section 13.3 for details).

Input Request Scope Attributes

None

Output Request Scope Attributes

com.escenic.publication.name
PublicationResolverProcessor writes the name of the publication to this attribute, unless
it is already set.

com.escenic.context.path
PublicationResolverProcessor writes the path of the requested item to this attribute,
unless it is already set.

"Path" here means the relative path from the publication root to the requested item. The path
for the soccer section of a newspaper, for example, might be /sports/soccer/ while the path
of a news content item might be /news/article123.ece.

7.4.1.2 SectionResolverProcessor

Component Name

/com/escenic/servlet/SectionResolverProcessor

Description

This processor attempts to find out:

• The id of the section the request should be directed to

• Whether or not the request is a section request

It does this by analyzing the content of the request scope attribute com.escenic.context.path.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 30

This filter takes the path (stored in com.escenic.context.path) and decodes it as far as possible
as the section tree, based on the publication's section hierarchy. It stores the section ID in the
com.escenic.context.section.id request attribute.

Configuration

The following property can be defined in WEB-INF/localconfig/com/escenic/servlet/
SectionResolverProcessor.properties:

APIResolver
The resolver to use. The resolver must belong to the class
com.escenic.servlet.APIResolver. If not set, the Content Engine's default
APIResolver is used.

Input Request Scope Attributes

com.escenic.publication.name

com.escenic.context.path

Output Request Scope Attributes

com.escenic.context
If the request is a section request, then the SectionResolverProcessor sets this attribute to
sec.

com.escenic.context.section.id
The id of the section the request is to be directed to.

com.escenic.context.path
The SectionResolverProcessor overwrites this attribute with a shorter path from which
the section components have been removed. For example:

• If the original value was /news/article123.ece and /news/ is found to identify a
section in the publication, then it is now set to article123.ece.

• If the original value was /sports/soccer/ and this is found to identify a section in the
publication, then it is now set to an empty string.

7.4.1.3 ArticleResolverProcessor

Component Name

/com/escenic/servlet/ArticleResolverProcessor

Description

This processor attempts to find out:

• Whether or not the request is a content item request

• The id of the content item being requested

It does this by analyzing the content of the request scope attribute com.escenic.context.path.

Configuration

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 31

The following property can be defined in WEB-INF/localconfig/com/escenic/servlet/
ArticleResolverProcessor.properties:

serverConfig
To be supplied.

Input Request Scope Attributes

com.escenic.context.path
To be supplied.

Output Request Scope Attributes

com.escenic.context
If the request is a content item request, then the ArticleResolverProcessor sets this
attribute to art. If not, then the attribute is not set.

com.escenic.context.article.id
The content item id extracted from com.escenic.context.path. If no content item id could
be extracted then the attribute is not set.

com.escenic.context.path
If the SectionResolverProcessor was able to extract a content item id from the original
value of this attribute, then it is now set to an empty string. If no content item ID could be
extracted, then the attribute is left unmodified.

7.4.1.4 PresentationProcessor

Component Name

/com/escenic/servlet/PresentationProcessor

Description

This processor attempts to create the implicit beans needed by the templates that will handle the
request, using the information in the request scope attributes created by preceding processors.

• com.escenic.publication.name (the publication name)

• com.escenic.context (set to either sec or art)

• com.escenic.context.section.id - the section id

• com.escenic.context.article.id - the content item id (for content item requests only)

Configuration

The following properties can be defined in WEB-INF/localconfig/com/escenic/servlet/
PresentationProcessor.properties:

APIResolver
The resolver to use. The resolver must belong to the class
com.escenic.servlet.APIResolver. If not set, the Content Engine's default
APIResolver is used.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 32

presentationLoader
The loader to use. The presentation loader must be of class
neo.xredsys.presentation.PresentationLoader. If not set, the Content Engine's
default PresentationLoader is used.

useRequestHeaderForRemoteAddr
To be supplied.

Input Request Scope Attributes

com.escenic.publication.name
To be supplied.

com.escenic.context
To be supplied.

com.escenic.context.section.id
To be supplied.

com.escenic.context.article.id
To be supplied.

Output Request Scope Attributes

com.escenic.context.publication
A neo.xredsys.api.Publication bean, loaded using the publication name in
com.escenic.publication.name.

com.escenic.context.section
A neo.xredsys.api.Section bean, loaded using the section id in
com.escenic.context.section.id.

com.escenic.context.article
A neo.xredsys.presentation.PresentationArticle bean, loaded using the content
item id in com.escenic.context.article.id. This request attribute is only set for
requests in which com.escenic.context is set to art.

7.4.1.5 PreviewProcessor

Component Name

/com/escenic/servlet/PreviewProcessor

Description

This processor is currently a placeholder and does nothing.

Configuration

There are no properties to set for this processor.

Input Request Scope Attributes

None.

Output Request Scope Attributes

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 33

None.

7.4.1.6 AgreementProcessor

Component Name

/com/escenic/servlet/AgreementProcessor

Description

This processor checks whether or not the Escenic objects in the request (section, content item and
possibly any related images or multimedia objects) require a valid agreement to be viewed. If an
agreement is required, the appropriate AgreementProvider is called. The processor then sets the
com.escenic.agreement.accessDenied request attribute to indicate the result of the check.

Configuration

The following property can be defined in WEB-INF/localconfig/com/escenic/servlet/
AgreementProcessor.properties:

alwaysAllowPreview
Set this parameter to false if you want to enforce agreements for previews. If not set, a default
value of true is used.

Input Request Scope Attributes

com.escenic.context.section
To be supplied.

com.escenic.context.article
To be supplied.

Output Request Scope Attributes

com.escenic.agreement.accessDenied
Is set to true if the requirements for displaying the Escenic objects in the request have not been
satisfied.

7.4.1.7 TemplateDispatchResolver

Component Name

/com/escenic/servlet/TemplateDispatchResolver

Description

This processor inspects the request scope attribute com.escenic.context.path to see whether or
not the request has been successfully parsed by the preceding processors:

• If com.escenic.context.path is empty, then the request was successfully parsed, so the
processor then checks whether or not the requested object exists/is accessible and:

• If it exists and is available, dispatches the request to /template/common.jsp or the handler
defined with the page property.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 34

• If it does not exist, returns an HTTP 404 response (Not Found).

• If it exists but is unavailable, returns an appropriate HTTP response.

• If com.escenic.context.path contains anything at all, then the request was not parsed
successfully. However, the request will still be dispatched to the web application, allowing it to
determine how to deal with the invalid request.

Configuration

The following property can be defined in WEB-INF/localconfig/com/escenic/servlet/
TemplateDispatchResolver.properties:

page
The JSP template or other handler to which the request is to be forwarded. If not set, a default
value of /template/common.jsp is used. This property can also be set by adding a forward-
to-page parameter to /WEB-INF/localconfig/defaults.properties (see section 13.3
for details).

Input Request Scope Attributes

com.escenic.context.path

Request Scope Attributes

This processor sets no request scope attributes.

7.5 CacheFilter
The CacheFilter manages a simple disk cache for images, and ensures that:

• Cached images are used if available

• All requested and currently un-cached images are cached

If an incoming request has not already been identified as a section or content item request, then the
CacheFilter checks the publication's image cache for the requested file. If it finds the requested
image, then it returns the image file, terminating the filter chain.

If it does not find the requested file in the image cache, then it calls the next filter in the filter chain. If
that filter returns an image file, then it:

• Adds the image to the cache

• Returns the image

Cached images are never invalidated. This means that if an image is updated (a new version is
uploaded or the original image is modified), the cached copy will not be updated. The only way to fix
this problem is to physically remove the outdated copy from the cache.

The CacheFilter needs to be configured before the filters/servlets that is should filter see the Web
XML Chapter (chapter 12) for an example.

The CacheFilter is configured in WEB.XML as follows:

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 35

<filter>
 <filter-name>CacheFilter</filter-name>
 <filter-class>com.escenic.presentation.servlet.multimedia.CacheFilter</filter-class>
 <init-param>
 <param-name>oncePerRequest</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>path</param-name>
 <param-value>/var/www/images</param-value>
 </init-param>
 <init-param>
 <param-name>cache-control</param-name>
 <param-value>private;max-age=2</param-value>
 </init-param>
 <init-param>
 <param-name>allowNonCachedUrls</param-name>
 <param-value>false</param-value>
 </init-param>
</filter>

Configuration

oncePerRequest
If set to true, then the filter is only executed for the initial request. If set to false, then the
filter is executed for every request, which on some servers may mean that it is re-applied each
time an include operation calls a new JSP file.

path
The path of the image cache folder. If not specified, then the cache location is determined
by filePublicationRoot. filePublicationRoot is a server property, defined
in the ServerConfig.properties file. The cache will by default be located under
filePublicationRoot in a folder with the name publication-name/multimedia/
dynamic.

cache-control
The HTTP Cache-Control header to included with images served by the Content Engine. If
this parameter is not specified, then a default Cache-Control header of public;max-age=60
is included. This default value will cause browsers to cache the images for 60 seconds. The
Cache-Control header format is specified in http://www.w3.org/Protocols/rfc2616/rfc2616-
sec14.html#sec14.9.

allowNonCachedUrls
If set to true, this parameter will allow the CacheFilter to serve dynamic image versions even
if the multimedia directory is read-only and the image version is not already available. This
will mean a significant performance overhead, so the filter will log an error whenever the
image version cannot be cached. By default this is not allowed, and the request will result in an
exception.

7.6 Modifying The Filter Chain
Some publications may have special requirements that are best satisfied by modifying the filter
chain: usually by adding an extra filter, or replacing one of the standard filters. The way you do
this depends upon whether you need to modify the main filter chain, or the processor chain in the
EscenicStandardFilterChain.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 36

7.6.1 Modifying The Main Filter Chain

The main filter chain is a standard servlet filter chain, and can be modified in the normal way. To
insert a filter of your own, for example, you would need to:

• Write your own filter class that implements the interface javax.servlet.Filter

• Declare and configure it by adding a filter element to WEB.XML

• Insert it into the filter chain by modifying the filter chain mapping in WEB.XML

For further information, see http://java.sun.com/products/servlet/Filters.html.

7.6.2 Modifying The Escenic Standard Filter Chain

In some cases, modifying the main filter chain may not solve your problem - you
might need, for example, to insert a filter between two of the processors called by the
EscenicStandardFilterChain. In this case you will need to:

• Create an Escenic processor class (not a filter) that performs the functions you require

• Create a set of .properties files that declare the processor and insert it into the processor chain
at the required point

• Package these items in a JAR file

• Deploy the JAR file in your publication

7.6.2.1 Creating an Escenic Processor

An Escenic processor is a class that implements the
com.escenic.presentation.servlet.GenericProcessor interface.

Standard servlet filters can create wrappers around the request and response objects they handle in
order to add information to them. It is not possible to do this in Escenic processor classes.

7.6.2.2 Creating Processor .properties Files

The processors executed by the default EscenicStandardFilterChain are defined in a system file
called StandardFilter.properties, which looks something like this:

$class com.escenic.presentation.servlet.LooseFilterChain

config.1xx -- reserved for third parties

config.2xx -- reserved for escenic core resolver filters
config.210 = ./PublicationResolverConfig
config.220 = ./SectionResolverConfig
config.230 = ./ArticleResolverConfig

config.3xx -- reserved for third parties

config.4xx -- reserved for escenic core presentation filters
config.400 = ./PresentationConfig

config.5xx -- reserved for third parties

config.6xx -- reserved for escenic core authentication and authorization filters

http://java.sun.com/products/servlet/Filters.html

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 37

config.600 = ./PreviewConfig
config.601 = ./AgreementConfig

config.7xx -- reserved for third parties

config.8xx -- reserved for escenic core dispatcher filters

config.800 = ./TemplateDispatchConfig

config.9xx -- reserved for third parties after
dispatching in case we didn't dispatch!

This file specifies the names of a series of configuration files, which in turn identify
and configure the classes implementing the processors in the chain. The file
PublicationResolverConfig.properties, for example, looks like this:

$class = com.escenic.presentation.servlet.LooseFilterChain$FilterChainConfigBuilder

filterName = PublicationResolver

filter = ./PublicationResolverFilter

must be an absolute path
initParameter.processorName = /com/escenic/servlet/PublicationResolverProcessor

The other files that are involved in configuring the PublicationResolverProcessor are:

PublicationResolverFilter.properties
which contains the following:

$class = com.escenic.presentation.servlet.ProcessorFilter

PublicationResolverProcessor.properties
which contains the following:

$class = com.escenic.presentation.servlet.PublicationResolverProcessor

publicationName = ${/defaults.publication-name}

As you can see, the last of these files contains a reference to the class which actually implements the
processor, com.escenic.presentation.servlet.PublicationResolverProcessor.

In order to insert your own processor into the default chain, you need to create a
corresponding set of files of your own. If, for example, you have created a processor class called
com.mycompany.mysterious.MysteriousProcessor, and you want to insert it into the
processor chain immediately after the standard ArticleResolver processor, then you would need
to create the following files:

StandardFilter.properties
which should contain something like:

config.310 = /com/mycompany/mysterious/MysteriousProcessorConfig

This file is merged with the system StandardFilter.properties file by the Content
Engine. The parameter name config.310 ensures that the processor is executed after the
ArticleResolver processor (at slot 230) and before the PresentationProcessor (at slot
400). It is also within the 300-399, which is reserved for use by third-party developers. You
should only use slots in these third-party ranges, because then you are sure that your processor

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 38

will not come into conflict with any standard processor added in later versions of the Content
Engine.

MysteriousProcessorConfig.properties
which should contain something like:

$class = com.escenic.presentation.servlet.LooseFilterChain
$FilterChainConfigBuilder

filterName = Mysterious

filter = ./MysteriousFilter

must be an absolute path
initParameter.processorName = /com/mycompany/mysterious/MysteriousProcessor

This file has a standard structure and contents. The parts that change from processor to
processor are highlighted in bold.

MysteriousFilter.properties
which must contain the following line:

$class = com.escenic.presentation.servlet.ProcessorFilter

This file always has exactly the same contents. Its name must match the name specified with the
filter parameter in the MysteriousProcessorConfig.properties file.

MysteriousProcessor.properties
which must at least contain the following line:

$class = com.mycompany.mysterious.MysteriousProcessor

If your processor has configuration parameters, then the file can also contain settings for these
parameters, for example:

$class = com.mycompany.mysterious.MysteriousProcessor

theAnswer = 42

7.6.2.3 Packaging The Processor

The processor class and all the properties files that configure it must be correctly packaged in a JAR
file before you can deploy the processor. To package it you must copy the files into a directory structure
that matches the package name of your processor class and the package naming conventions required
by the Content Engine's plugin architecture.

For the example in the previous section, you need to create the following structure:

com
+-escenic
| +-servlet
| +-plugin-config
| +-com
| +-escenic
| | +-servlet
| | +-StandardFilter.properties
| +-mycompany
| +-mysterious
| +-MysteriousProcessorConfig.properties

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 39

| +-MysteriousFilter.properties
| +-MysteriousProcessor.properties
+-mycompany
 +-mysterious
 +-MysteriousProcessor.class

Once you have created the structure and you are sure that:

• The Escenic parts of it match the structure above

• Your own parts of the structure match the package name you have used

pack it in a JAR file. (To do this, use an archiving utility that is capable of creating JAR files.)

7.6.2.4 Deploying the processor

To deploy the processor, copy the JAR file into the WEB-INF/lib folder of your publication and
redeploy the publication.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 40

8 Decorators

A decorator is a commonly-used Java programming pattern that enables programmers to extend the
functionality of an object in a way that is transparent to users of the object. Decorators are used in the
Content Engine to add functionality to content items and section pages. You need Java programming
skills to create a decorator, but not to make use of one in your templates.

Decorators can be used in Escenic applications to modify the properties or field values returned from
content items in various ways. The code examples used in this section, for example, can be used to:

• Automatically convert a content item's title to upper case

• Automatically expand any collection content items (see section 8.1.4) in a related content item's
relation

All the functions that can be performed with decorators can also be performed in other ways. You
could, for example, either include in-line Java code in your templates or write your own JSP tags.
However, using decorators has a number of advantages:

• No in-line code ensures simpler, more legible templates

• The template developer does not need to remember to use special tags

• Decorators only need to be declared in the content-type resource: once this has been done they
are fully automatic and completely transparent

• They can be re-used simply by adding declarations to the content-type resource

Obviously, decorators are not always the right solution. If, for example, you want content item titles
to be upper case in some contexts but not in others, then you would need to use in-line code or a
custom tag rather than a decorator. And in other cases it may be better to use transaction filters
(see chapter 10).

Note that if you are using memcached, the decorator must be serializable.

8.1 Article decorators

8.1.1 Creating A Decorator

An Escenic content item decorator is a Java class that:

• Extends neo.xredsys.presentation.PresentationArticleDecorator

• Contains a get method for each content item property it is to modify

The following example shows a content item decorator that converts a content item's title property
to upper case:

package com.mycompany.decorators;

import neo.xredsys.presentation.*;

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 41

public class TitleToUpperCase extends PresentationArticleDecorator {
 public TitleToUpperCase(PresentationArticle pa) {
 super(pa);
 }

 public String getTitle() {
 String title = super.getTitle().toUpperCase();
 return title;
 }
}

The PresentationArticleDecorator class implements the PresentationArticle interface.
Since the TitleToUpperCase class extends PresentationArticleDecorator, it can be used
to override methods in the standard implementation of PresentationArticle. In this case, the
getTitle() method will override the standard PresentationArticle.getTitle() method.

The TitleToUpperCase constructor accepts a PresentationArticle bean as input parameter
and stores it in the property super (i.e, superclass). When a bean for a content type that is configured
to use the TitleToUpperCase decorator is created, the Content Engine:

• Creates a standard PresentationArticle bean

• Creates a TitleToUpperCase bean, passing in the PresentationArticle bean as its
constructor parameter

When the article's getTitle() method is called, TitleToUpperCase.getTitle():

1. Calls super's getTitle() method to get the title property

2. Calls String.toUpperCase() to convert the title to upper case

3. Returns the result

Note the following points:

• A decorator changes the behavior of the content item bean itself. It does not matter whether you
access the title property via a JSP tag or in-line java - it will always be returned in upper case.

• Only the specified property is affected. If you access the title field directly via the Java
getFieldElement() method, then it will not be converted to upper case.

Before a decorator can be used it must be:

• Compiled

• Added to the web application's classpath

To compile a decorator you need the following Escenic JAR files in your classpath:

• engine-core-5.6.13.183224.jar

• engine-presentation-5.6.13.183224.jar

• common-util-n.n.n.n.jar (replace n.n.n.n with the version number of the common-util library
included with the current version of the Content Engine).

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 42

8.1.2 Creating a Decorator .properties File

The article decorators executed by the system are defined in a configuration file called
PresentationArticleManager.properties. To register an article decorator called
TitleToUpperCase, you must create a file called WEB-INF/localconfig/neo/xredsys/
presentation/PresentationArticleManager.properties in your web application folderand
add the following definition to it:

decoratorFactory.titleToUpperCase=/com/mycompany/TitleToUpperCase

You must then create a properties file for the decorator (called WEB-INF/localconfig/com/
mycompany/TitleToUpperCase.properties in this case) and add an entry defining your class:

$class=neo.xredsys.presentation.ReflectionPresentationArticleDecoratorFactory
className=com.mycompany.TitleToUpperCase

8.1.3 Declaring a Decorator

In order for an article decorator to be actually used, you must declare it by adding a ui:decorator
element to your publication's content-type resource. For example:

<content-type name="xyz">
 ...
 <ui:decorator name="titleToUpperCase"/>
 ...
</content-type>

Once you have done this, the decorator will automatically take effect for all content items of that type.
You can add the decorator to as many content type definitions as you want.

You can add more than one decorator to a content type. For example:

<content-type name="xyz">
 ...
 <ui:decorator name="titleToUpperCase" />
 <ui:decorator name="titleTrim" />
 ...
</content-type>

Note the following:

• The decorator element belongs to the interface-hints namespace, which means that its
name will usually be preceded by a prefix (ui in the examples above) declared at the start of
the content-type resource file. For full descriptions of the content-type and decorator
elements, see the Escenic Content Engine Resource Reference.

• Multiple decorators are executed in the order they appear in the group definition. This may
sometimes be significant. Request decorators, however, are always executed last.

8.1.4 A Complex Decorator Example

In order to understand the point of this example, you need to know what collection content items
are.

A collection content item is a content type (defined in the content-type resource) that has one or
more relations, but no ordinary fields. It is not intended for display in a publication, but is created for

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 43

internal use by editorial staff as a container for relations. Imagine, for example a group of background
articles on a particular subject that all need to be added as related content items to any new article
written on the same subject. Instead of requiring editorial staff to individually add each related content
item, a manager can create a collection content item and add all the related content items to this one
content item. Editorial staff can then add all the relations in one go by simply adding the collection
content item to their new content items.

The catch, of course, is that the template programmer must then "unpack" these collection content
items, converting the single related collection content item back into a series of ordinary related
content items in order to display them properly. This could be done using custom tags or in-line Java,
but this example shows how it can be done using a decorator class.

package com.mycompany.decorators;

import neo.xredsys.presentation.*;
import java.util.*;

public class UnpackCollectionArticles
 extends PresentationArticleDecorator {

 /* to hold the names of all "collection" content types */
 private Set articleTypeNames;

 public UnpackCollectionArticles(PresentationArticle pa) {
 super(pa);
 articleTypeNames = new HashSet();

 /* add the content type names (only one in this case) */
 articleTypeNames.add("collection");
 }

 public List getArticles() {
 /* get all of this article's related articles */
 List relatedArticles = new ArrayList(super.getArticles());

 /* get this article's related collection articles WHY IS THIS DIFFERENT */
 List collectionArticles = super.getArticles(articleTypeNames);

 /* remove the collection articles from the list of related articles */
 relatedArticles.removeAll(collectionArticles);

 /* for each related collection article... */
 Iterator i = collectionArticles.iterator();
 while(i.hasNext()) {
 PresentationArticle a = (PresentationArticle)i.next();

 /* ...add all the collection article's related articles to
 THIS article's related articles list */
 relatedArticles.addAll(a.getArticles());
 }
 return relatedArticles;
 }

You can use a single decorator class to modify more than one method. It might be the case, for
example, that your collection content items are used to hold lists of related images as well as lists of
related content items. In this case you would want to override the getImages() method as well as
getArticles():

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 44

 public List getImages() {
 List relatedImages = new ArrayList(super.getImages());
 List collectionArticles=super.getArticles(articleTypeNames);
 Iterator i = collectionArticles.iterator();
 while(i.hasNext()) {
 PresentationArticle a = (PresentationArticle)i.next();
 relatedImages.addAll(a.getImages());
 }
 return relatedImages;
 }
}

8.2 Pool decorators
An Escenic pool decorator is a Java class that:

• Extends neo.xredsys.presentation.PresentationPoolDecorator

• Contains a get method for each property it is to modify

Escenic supports two different types of pool decorators:

Standard pool decorator
A standard pool decorator is created when the pool is loaded from the database. It is cached and
lives until the pool is removed from the pool presentation cache.

Request pool decorator
A request pool decorator is created the first time someone uses a given instance of a pool in
an HTTP request. The decorator is cached in the request and flushed when the request is
completed. You should only use a request pool decorator if you need the decorator to behaves
differently in different requests. For example, a time-controlled decorator that enables/disables
groups based on the time of the day should be implemented using a request pool decorator.

A standard pool decorator must extend
neo.xredsys.presentation.PresentationPoolDecorator. A request pool decorator can also
extend this class, but if it needs access to javax.servlet.ServletRequest then it should extend
neo.xredsys.presentation.RequestPresentationPoolDecorator instead.

Before a decorator can be used it must be:

• Compiled

• Added to the web application's classpath

To compile a decorator you need the Escenic JAR file engine-
presentation-5.6.13.183224.jar in your classpath.

Once you have a created a pool decorator class, you have to:

• Create a set of .properties files that declare the decorator and registers it in the system.

• Declare the decorator in the layout-group publication resource

• Package the decorator in a JAR file

• Deploy the JAR file in your publication

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 45

8.2.1 Create the Decorator .properties Files

For a standard pool decorator

The standard pool decorators executed by the system are defined in a configuration file
called PresentationPoolManager.properties. To register a pool decorator called
MyDecorator, you must create a file called configuration-root/neo/xredsys/presentation/
PresentationPoolManager.properties in one of your configuration layers and add the
following definition to it:

decoratorFactory.myDecorator=/com/mycompany/MyDecorator

You must then create a properties file for the decorator (called configuration-root/com/mycompany/
MyDecorator.properties in this case) and add an entry defining your class:

$class=neo.xredsys.presentation.ReflectionPresentationPoolDecoratorFactory
className=com.mycompany.MyDecorator

For a request pool decorator

The request pool decorators executed by the system are defined in a configuration file called
RequestPresentationPoolManager.properties.To register a pool decorator called
MyDecorator, you must you must create a file called configuration-root/neo/xredsys/
presentation/RequestPresentationPoolManager.properties in one of your configuration
layers and add the following definition to it:

decoratorFactory.myRequestDecorator=/com/mycompany/MyRequestDecorator

You must then create a properties file for the decorator (called configuration-root/com/mycompany/
MyRequestDecorator.properties in this case) and add an entry defining your class:

$class=neo.xredsys.presentation.ReflectionPresentationPoolDecoratorFactory
className=com.mycompany.MyRequestDecorator

8.2.2 Declare the Decorator

In order for a pool decorator to be actually used, you must declare it by adding a ui:decorator
element to your publication's layout-group resource. For example:

<group name="xyz" root="true">
 ...
 <ui:decorator name="myDecorator"/>
 ...
</group>

The ui:decorator element must be added as the child of a top-level group element (that is, one
that is a direct child of the resource file's root groups element).

Once you have done this, the decorator automatically takes effect for all pools within the top-level
group and its children. You can add the decorator to as many top-level group elements as you want.

You can add more than one decorator to a group. For example:

<group name="xyz" root="true">
 ...
 <ui:decorator name="myDecorator/>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 46

 <ui:decorator name="myRequestDecorator/>
 ...
</layout>

Note the following:

• The decorator element belongs to the interface-hints namespace, which means that its
name will usually be preceded by a prefix (ui in the examples above) declared at the start of
the layout-group resource file. For full descriptions of the layout-group and decorator
elements, see the Escenic Content Engine Resource Reference.

• Multiple decorators are executed in the order they appear in the group definition. This may
sometimes be significant. Request decorators, however, are always executed last.

8.3 Packaging Decorators
A decorator class and all the properties files that configure it must be correctly packaged in a JAR file
before you can deploy it. To package it you must:

1. Copy the files into a folder structure that matches:

• The package name of your decorator class

• the package naming conventions required by the Content Engine's plugin architecture

2. Pack it in a JAR file using an archiving utility that is capable of creating JAR files.

Article decorator package structure

For the article decorator example shown earlier, you would need to create a JAR file with the following
structure:

com
+-escenic
| +-servlet
| +-plugin-config
| +-neo
| | +-xredsys
| | +-presentation
| | +-ArticlePresentationManager.properties
| +-com
| +-mycompany
| +-TitleToUpperCase.properties
+-mycompany
 +-TitleToUpperCase.class

Generic pool decorator package structure

For the generic pool decorator example shown earlier, you would need to create a JAR file with the
following structure:

com
+-escenic
| +-servlet

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 47

| +-plugin-config
| +-neo
| | +-xredsys
| | +-presentation
| | +-PresentationPoolManager.properties
| +-com
| +-mycompany
| +-MyDecorator.properties
+-mycompany
 +-MyDecorator.class

Request pool decorator package structure

For the request pool decorator example shown earlier, you would need to create a JAR file with the
following structure:

com
+-escenic
| +-request
| +-plugin-config
| +-neo
| | +-xredsys
| | +-presentation
| | +-RequestPresentationPoolManager.properties
| +-com
| +-mycompany
| +-MyRequestDecorator.properties
+-mycompany
 +-MyRequestDecorator.class

8.3.1 Deploy the Decorator

To deploy the decorator, copy the JAR file into the WEB-INF/lib folder of your publication and
redeploy the publication.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 48

9 Event Listeners

An event listener is a Java object that listens for Content Engine events and responds to them.
Events in this context are messages that are broadcast by the Content Engine whenever certain things
occur. An event is broadcast, for example, whenever an Escenic object is created or modified. You
can use event listeners to extend and customize the Content Engine in various ways. You might, for
example, create an event listener that listens for the creation of new content items and automatically
exports the newly-created content items to an external system.

An Escenic event is an object of the class neo.xredsys.api.IOEvent. An IOEvent object has a
type property that indicates what kind of event it represents. An event generated when an object is
created has a type of OBJECT_CREATED, for example. An IOEvent object also has a number of other
properties that are used to hold information about the event that has occurred. An event listener can
therefore interrogate an event for the information it needs to respond to the event.

9.1 Making An Event Listener
To make an event listener, create a Java class that extends the abstract class
neo.xredsys.api.services.AsyncEventListenerService. This is a convenience
class that extends neo.nursery.AbstractNurseryService. It provides boilerplate
implementations of the methods defined in the neo.xredsys.api.IOEventListener and
neo.xredsys.api.IOEventFilter interfaces.

Your class must include implementations of the following methods:

accept(event)
This method is defined in the
neo.xredsys.api.services.AsyncEventListenerService class. Use it to determine
which events your listener will respond to. Return true for all events you want the listener to
respond to.

This method is called synchronously and blocks other event listeners from receiving events
while it is executing. You should therefore only use it carry out fast initial filtering of events.

handle(event)
This method is defined in the
neo.xredsys.api.services.AsyncEventListenerService class. It is called every time
your accept(event) method returns true. Use it to perform whatever actions you want to be
carried out for accepted events.

This method is called asynchronously and therefore does not block other event listeners. The
number of events waiting to be responded to by this method can be seen in the backlog
property. The execution time of this method can be recorded by the optional HitCollector.

Your class must also have a public no argument constructor. For example:

public class MyService extends AsyncEventListenerService {
 public MyService() {
 super(false);
 }
 //More code goes here...

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 49

}

This constructor creates an AsyncEventListenerService that listens to all events, both local
and remote. If you want to create a service that only listens to local events, set super(true) in the
constructor.

Your class may optionally implement the following methods as well:

startEventListener()
This method is defined in neo.xredsys.api.services.AsyncEventListenerService.
You can use it to carry out any actions that you want to be performed when the service is started.
You might, for example, use it to validate the configuration of your service.

stopEventListener()
This method is defined in neo.xredsys.api.services.AsyncEventListenerService.
You can use it to carry out any actions that you want to be performed when the service is
stopped. You might, for example, use it to clear lists that have been populated while the service
was running.

For more detailed information about
neo.xredsys.api.services.AsyncEventListenerService, see the javadoc.

Here is an example event listener called com.mycompany.events.NewArticleNotifier that:

• Sends an e-mail to a configured e-mail address whenever a new content item is created

• Validates its configuration on start-up

The class's constructor calls its super constructor with the parameter true:

 public NewArticleNotifier() {
 super(true);
 }

This ensures that the service only listens to local events and will therefore only send an e-mail when a
content item is created on the local server. Setting this parameter to false would result in multiple
mails being sent for every content item created (one from each server in the cluster).

Properties are defined to hold the both the address to which notifications are to be sent and the sender
address to be included in the messages. It is considered good practice to inject parameters this way.

 public void setEmail(final String pEmail) {
 this.email = pEmail;
 }

 public String getEmail() {
 return this.email;
 }
 public void setEmailSender(final EmailSender pEmailSender) {
 this.emailSender = pEmailSender;
 }

 public EmailSender getEmailSender() {
 return this.emailSender;
 }

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 50

The accept method accepts only OBJECT_CREATED events, and only for objects of type article. It
is important to ensure that this method returns quickly since it blocks the execution of other event
listeners' accept methods. If your accept method uses several criteria to select events, It is a good
idea to place the if tests that will reject most events first, as here:

 @Override
 protected boolean accept(final IOEvent pEvent) throws Exception {
 if (IOEvent.OBJECT_CREATED == pEvent.getType()) {
 if (IOAtom.OBJECTTYPE_ARTICLE == pEvent.getObjectKey().getObjectType()) {
 return true;
 }
 }
 return false;
 }

The handle method is only called only for events where the accept method has returned true. It is
therefore safe to assume in this case that the input event is an OBJECT_CREATED event for an article.
The method is executed in a separate thread so it does not need to be especially fast. If it executes too
slowly to keep up with the number of events being generated then the value of the backlog property
will increase accordingly.

If you define a hit collector for your event listener (see Performance monitoring in section
9.2), then the execution time of this method will be recorded by the hit collector. You can view the
information gathered by the hit collector on the escenic-admin web application's Performance
Summary page. For information about escenic-admin see Escenic Content Engine Server
Administration Guide, chapter 2.

 @Override
 protected void handle(final IOEvent pEvent) throws Exception {
 Article article = (Article) pEvent.getObject();

 EmailEvent email = new EmailEvent();
 email.setRecipients(new Address[] {new InternetAddress(getEmail())});
 email.setSubject("New article with title '" + article.getTitle() + "' was
 created");

 getEmailSender().sendMessage(email);
 }

The startEventListener method is called after all properties have been set, but before
the EventListener is registered with the Content Engine so that it can receive events. If
startEventListener throws an exception then the EventListener is not registered
and will not receive any events. The startEventListener method must include a
super.startEventListener() call.

The example shown here performs some simple checks on the supplied configuration values:

 @Override
 protected void startEventListener() throws IllegalStateException,
 IllegalArgumentException, Exception {
 super.startEventListener();

 Validate.notNull(getEmailSender(), "Email sender is not set, will not start the '"
 + getClass().getName() + "' service");
 Validate.notNull(getEmail(), "Email is not set, will not start the '" +
 getClass().getName() + "' service");
 }

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 51

Here is the example code again in full, including all the necessary boilerplate code:

package com.mycompany.events;

import javax.mail.Address;
import javax.mail.internet.InternetAddress;

import neo.xredsys.api.Article;
import neo.xredsys.api.IOAtom;
import neo.xredsys.api.IOEvent;
import neo.xredsys.api.services.AsyncEventListenerService;
import neo.xredsys.email.EmailEvent;
import neo.xredsys.email.EmailSender;

import org.apache.commons.lang.Validate;

public class NewArticleNotifier extends AsyncEventListenerService {

 public NewArticleNotifier() {
 super(true);
 }

 private String email;

 public void setEmail(final String pEmail) {
 this.email = pEmail;
 }

 public String getEmail() {
 return this.email;
 }

 private EmailSender emailSender;

 public void setEmailSender(final EmailSender pEmailSender) {
 this.emailSender = pEmailSender;
 }

 public EmailSender getEmailSender() {
 return this.emailSender;
 }

 @Override
 protected boolean accept(final IOEvent pEvent) throws Exception {
 if (IOEvent.OBJECT_CREATED == pEvent.getType()) {
 if (IOAtom.OBJECTTYPE_ARTICLE == pEvent.getObjectKey().getObjectType()) {
 return true;
 }
 }
 return false;
 }

 @Override
 protected void handle(final IOEvent pEvent) throws Exception {
 Article article = (Article) pEvent.getObject();

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 52

 EmailEvent email = new EmailEvent();
 email.setRecipients(new Address[] {new InternetAddress(getEmail())});
 email.setSubject("New article with title '" + article.getTitle() + "' was
 created");

 getEmailSender().sendMessage(email);
 }

 @Override
 protected void startEventListener() throws IllegalStateException,
 IllegalArgumentException, Exception {
 super.startEventListener();

 Validate.notNull(getEmailSender(), "Email sender is not set, will not start the '"
 + getClass().getName() + "' service");
 Validate.notNull(getEmail(), "Email is not set, will not start the '" +
 getClass().getName() + "' service");
 }
}

Before an event listener can be used it must be:

• Compiled

• Added to the Content Engine's classpath

To compile the example you must add the following JAR files to the classpath:

engine-core-5.6.13.183224.jar
This is the Escenic jar that contain most of the classes needed.

common-nursery-5.6.13.183224.jar
The Content Engine's dependency injection framework.

commons-lang-2.3.jar
The Content Engine's validation framework.

mail-1.4.jar
This jar contain the dependency injection framework (Nursery) we use.

9.1.1 Handling Staged Content Item Events

By default, neo.xredsys.api.services.AsyncEventListenerService does not handle
events generated for staged content items (see chapter 21). If you want your event listener to be able
to handle events for staged content items as well as ordinary content items then you need to explicitly
extend it to implement the neo.xredsys.api.StagedEventListener marker interface.

To make our example event listener handle staged content items as well, therefore, all we need to do is
modify the class declaration as follows:

public class NewArticleNotifier extends AsyncEventListenerService implements
 StagedEventListener {
 ...
}

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 53

This event listener will now handle events for all content items, both staged and unstaged. If you only
want to handle events for staged content items (or handle staged content items differently), you can
either:

• Use the new neo.xredsys.api.Article.isStaged() method to distinguish between staged
and unstaged content items, or

• Check if the event has a Parameter property called event-type-parameter with the value
staged

The following code, for example, will filter out all events for unstaged objects:

if ("staged".equals(pEvent.getParameter("event-type-parameter")) {
 //process the event
} else {
 //do nothing
}

9.1.2 Staged Content Items and Publishing Status

If your handler is concerned with the publishing status of content items (whether or not they are
published), then you need to think carefully about what state-change events actually mean for staged
and unstaged content items, and if necessary handle them differently. If, for example, you trap an
OBJECT_STATE_CHANGED event and the new state of the content item is approved, then:

• If the content item is unstaged, then there is no published version.

• If the content item is staged then there is a published version.

9.2 Using An Event Listener
For detailed information about configuration files, configuration layers and an explanation of the
configuration-root placeholder used in the file paths in this section, see the Escenic Content
Engine Server Administration Guide.

The event listeners executed by the Content Engine are defined in a configuration file called
configuration-root/Initial.properties. To enable the NewArticleNotifier listener,
therefore, you must add a declaration to Initial.properties in one or more of your configuration
layers. For example:

service.60-articlenotifier=/com/mycompany/NewArticleNotifier

You must also create a properties file for the listener called NewArticleNotifier.properties,
and save it in the location you have specified in the same configuration layer(s) - configuration-root/
com/mycompany/NewArticleNotifier.properties in this case. The file must at least contain
$class and eventManager entries. In the particular case of the NewArticleNotifier example
you will also need to set the email and emailSender properties. For example:

$class=com.mycompany.events.NewArticleNotifier
eventManager=/io/api/EventManager
email=sample@mycompany.com
emailSender=/neo/io/services/MailSender

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 54

Finally, you must make sure that the email sender declared in configuration-root/com/mycompany/
NewArticleNotifier.properties. is correctly configured. Create a configuration file called
configuration-root/neo/io/services/MailSender.properties and configure it with
appropriate settings. For example:

enabled=true
mailHost=smtp.mycompany.com
defaultSender=noreply@mycompany.com

If you have trouble running your event listener, try checking the View Services page of the
escenic-admin web application or the Content Engine's log files.

Performance monitoring

If you want to use the Content Engine's HitCollector component to gather statistics about the
performance of an event listener, then you can do so by adding one more line to its properties (i.e.,
configuration-root/com/mycompany/NewArticleNotifier.properties in the case of this
example):

collector=./NewArticleNotiferCollector

You will then also need to create a configuration file for the collector you have declared (configuration-
root/com/mycompany/NewArticleNotifierCollector.properties in this case):

$class=neo.util.stats.HitCollector
denominator=events handled
description=Events handled by 'com.mycompany.events.NewArticleNotifier'
failureDescription=failed events

The information gathered by the hit collector can be viewed on the escenic-admin web application's
Performance Summary page. For information about escenic-admin see Escenic Content
Engine Server Administration Guide, chapter 2.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 55

10 Transaction Filters

A transaction filter is a user-defined function that gets executed whenever certain Content
Engine operations (or transactions) are performed, and can thereby modify the outcome of those
operations. The transactions that can be modified in this way are:

• Object creation

• Object update

• Object deletion

A transaction filter is implemented as a Java class. It is in many ways similar to an event listener (see
chapter 9). However, where an event listener performs an operation immediately after some Content
Engine operation has been carried out, a transaction filter is executed during the operation itself. A
transaction filter can, for example:

• Modify the content of a content item as it is being saved

• Prevent a content item from being deleted unless certain criteria are met

10.1Making A Transaction Filter
To make a transaction filter, create a Java class that extends the abstract class
neo.xredsys.api.services.TransactionFilterService. This is a convenience
class containing empty "do nothing" implementations of the methods defined in the
neo.xredsys.api.TransactionFilter interface:

doCreate(object)
which is executed immediately before a new object is saved.

doUpdate(object)
which is executed immediately before changes to an existing object are saved.

doStagedUpdate(object)
which is executed immediately before changes to an existing staged object are saved. For an
explanation of staging, see chapter 21.

Note that you cannot change the state of a staged object to published in a transaction filter.
Any attempt to do so will result in an exception.

doDelete(object)
which is executed immediately before an existing object is deleted.

isEnabled()
which is called by the Content Engine to determine whether or not the filter is currently enabled.

All you need to do in your class is re-implement the "do" method(s) that you are interested in. The
object parameter passed in to these methods is a neo.xredsys.api.IOTransaction object and
represents the object being created, updated or deleted. You can both query this object and modify it.
In the case of create and update transactions, any changes you make to it will be reflected in the saved
object.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 56

Here is an example transaction filter called com.mycompany.transactionFilters.WordCount
that:

• Counts the words in the body of a newly-created or updated content item

• Writes the word count to one of the content item's fields (called wordcount - the example assumes
that the content item has a field with this name)

package com.mycompany.transactionFilters;

import java.util.*;
import neo.xredsys.api.*;
import neo.xredsys.api.services.*;

public class WordCount extends TransactionFilterService {

 public WordCount() {
 }

 public void doCreate(IOTransaction pObject) throws FilterException {
 if (pObject instanceof ArticleTransaction) {
 countWords((ArticleTransaction)pObject);
 }
 }

 public void doUpdate(IOTransaction pObject) throws FilterException {
 if (pObject instanceof ArticleTransaction) {
 countWords((ArticleTransaction)pObject);
 }
 }

 public void doStagedUpdate(IOTransaction pObject) throws FilterException {
 if (pObject instanceof ArticleTransaction) {
 countWords((ArticleTransaction)pObject);
 }
 }

 public void countWords(ArticleTransaction pArticle) {
 String original = pArticle.getElementText("body");
 int count = new StringTokenizer(original).countTokens();
 pArticle.setElementText("wordcount", Integer.toString(count));
 }

}

Only update and create operations are of interest here, so the class does not contain an
implementation of doDelete(). The doCreate() and doUpdate() methods are identical:
they simply check if the transaction object is a content item and if it is, call countWords().
countWords() counts the words in the content item's body field and writes the result to the
wordcount field.

This version of the filter cannot easily be re-used because the field names body and wordcount are
hard-coded. It is better to create properties for these field names:

 private String mFieldToCount = "body";
 private String mFieldToUpdate = "wordcount";

 public void setFieldToCount(String pFieldToCount) {

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 57

 mFieldToCount = pFieldToCount;
 }

 public String getFieldToCount() {
 return mFieldToCount;
 }

 public void setFieldToUpdate(String pFieldToUpdate) {
 mFieldToUpdate = pFieldToUpdate;
 }

 public String getFieldToUpdate() {
 return mFieldToUpdate;
 }

and modify the countWords() method accordingly:

 public void countWords(ArticleTransaction pArticle) {
 String original = pArticle.getElementText(getFieldToCount());
 int count = new StringTokenizer(original).countTokens();
 pArticle.setElementText(getFieldToUpdate(), Integer.toString(count));
 }

If you do this, then the field names can be configured externally by setting parameters - see section
10.2 for further information.

The countWords() method is a very rudimentary word counter and not recommended for real
use.

Before a transaction filter can be used it must be:

• Compiled

• Added to the Content Engine's classpath

To compile a transaction filter you need the Escenic JAR file engine-core-5.6.13.183224.jar
and the corresponding current version of common-nursery-version-number.jar in your classpath.

10.2Using A Transaction Filter
For detailed information about configuration files, configuration layers and an explanation of the
configuration-root placeholder used in the file paths in this section, see the Escenic Content
Engine Server Administration Guide.

The transaction filters executed by the Content Engine are defined in a configuration file called
configuration-root/Initial.properties. To enable the WordCount filter, therefore, you must add
a declaration to this file in one or more of your configuration layers. For example:

service.60-wordcount=/com/mycompany/WordCountFilter

You must also create a properties file for the filter called WordCountFilter.properties, and save
it in the location you have specified in the same configuration layer(s) - configuration-root/com/
mycompany/WordCountFilter.properties in this case. The file must at least contain $class,
filterName and objectUpdater entries. These specify the class that implements the filter, a name,
and the component to register the TransactionFilter against:

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 58

$class=com.mycompany.transactionFilters.WordCount
filterName=MyWordCountFilter
objectUpdater=/io/api/ObjectUpdater

You can also set class properties in this file. For example:

$class=com.mycompany.transactionFilters.WordCount
filterName=MyWordCountFilter
objectUpdater=/io/api/ObjectUpdater

fieldToCount=main
fieldToUpdate=articleLength

Once you have added these configuration files, word counts will be added to any content items that are
created or saved. The TransactionFilterService class has a serviceEnabled property that
can be used to enable/disable filters. You can therefore disable any filter by adding

serviceEnabled=false

to the properties file.

If no other transaction filters or post-transaction filters have been defined, then there may be no
configuration-root/Initial.properties file. In this case you must create one.

10.3Error Handling
You can deal with errors in your transaction filters by raising
neo.xredsys.api.FilterException exceptions.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 59

11 Post-transaction Filters

The previous two chapters described two types of user-defined functions called event listeners and
transaction filters. Post transaction filters provide a third way to implement your own functions.
The differences between the three types can be summarized as follows:

• An event listener is executed after a specified type of object transaction (create, update or delete)
has completed. It is triggered by the event system.

• A transaction filter is executed during a specified type of object transaction (create, update
or delete), before it is completed. Specifically, it is executed immediately before the commit that
terminates the transaction, giving it the opportunity to modify the data that is committed. It is not
triggered by the event system, but directly called by the Content Engine module that performs the
transaction.

• A post-transaction filter is similar to a transaction filter in the following respects:

• It is executed during an object transaction.

• It is not event-dependent, but called directly by the Content Engine module that performs the
transaction.

On the other hand, it is similar to an event listener in that it is executed right at the end of the
transaction, after the object has been committed, and can therefore not affect the outcome of the
transaction.

These differences mean that a post-transaction filter can be used to carry out the same types of
function as an event listener. It is, however, likely to be somewhat more reliable than an event listener
because it does not depend on the timely delivery of an event. It is possible, for example, for some
other operation to be executed between the end of a transaction and the execution of a event listener
triggered by it, thus affecting the operation of the event listener. On the other hand, an event listener
does not need to run on the same host as the Content Engine to which it is responding, making it more
flexible. In a multi-host installation, you may want an event listener running on one of your hosts to be
able to respond to events triggered by any of the Content Engines in the cluster.

11.1Making a Post-transaction Filter
To make a post-transaction filter, create a Java class that extends the abstract class
neo.xredsys.api.services.PostTransactionFilterService. This is a convenience
class containing empty "do nothing" implementations of the methods defined in the
neo.xredsys.api.PostTransactionFilter interface:

doPostCreate(object)
which is executed immediately after a new object is saved.

doPostUpdate(object)
which is executed immediately after changes to an existing object are saved.

doStagedPostUpdate(object)
which is executed immediately after changes to an existing staged object are saved. For an
explanation of staging, see chapter 21.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 60

doPostDelete(object)
which is executed immediately after an existing object is deleted.

isEnabled()
which is called by the Content Engine to determine whether or not the filter is currently enabled.

Before a post-transaction filter can be used it must be:

• Compiled

• Added to the Content Engine's classpath

To compile a post-transaction filter you need the Escenic JAR file engine-
core-5.6.13.183224.jar in your classpath.

11.2Using a Post-Transaction Filter
For detailed information about configuration files, configuration layers and an explanation of the
configuration-root placeholder used in the file paths in this section, see the Escenic Content
Engine Server Administration Guide.

The post-transaction filters executed by the Content Engine are defined in a configuration file called
configuration-root/Initial.properties. To enable a filter called MyPostTransFilter filter,
therefore, you must add a declaration to this file in one or more of your configuration layers. For
example:

service.60-myPostFilter=/com/mycompany/MyPostTransFilter

You must also create a properties file for the filter called MyPostTransFilter.properties, and
save it in the location you have specified in the same configuration layer(s) - configuration-root/com/
mycompany/MyPostTransFilter.properties in this case. The file must at least contain $class,
filterName and objectUpdater entries. These specify the class that implements the filter, a name,
and the component to register the PostTransactionFilter against:

$class=com.mycompany.MyPostTransFilter
filterName=MyWordCountFilter
objectUpdater=/io/api/ObjectUpdater

You can also set class properties in this file. For example:

$class=com.mycompany.MyPostTransFilter
filterName=MyWordCountFilter
objectUpdater=/io/api/ObjectUpdater

myFilterParameter=99

Once you have added these configuration filesthe filter will be called every time a create/delete/update
operation is performed. The PostTransactionFilterAdapter class has an serviceEnabled
property that can be used to enable/disable filters. You can therefore disable any filter by adding

serviceEnabled=false

to the properties file.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 61

If no other transaction or post-transaction filters have been defined, then there may be no
configuration-root/Initial.properties file. In this case you must create one.

11.3Error Handling
You can deal with errors in your post-transaction filters by raising
neo.xredsys.api.FilterException exceptions. Note that, unlike transaction filters, setting the
FilterException's errorFatal property to true will not cause the calling create/delete/update
operation to fail.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 62

12 The web.xml File

The web.xml file provides configuration and deployment information for web components in a web
application. It must reside in the web application's WEB-INF directory. The following listing shows
the content of the web.xml file for a standard Escenic publication.

<?xml version="1.0" encoding="utf-8"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
web-app_2_4.xsd"
 version="2.4">
 <filter>
 <filter-name>BootstrapFilter</filter-name>
 <filter-class>com.escenic.presentation.servlet.BootstrapFilter</filter-class>
 <init-param>
 <param-name>oncePerRequest</param-name>
 <param-value>true</param-value>
 </init-param>
 </filter>

 <filter>
 <filter-name>TimerFilter</filter-name>
 <filter-class>neo.servlet.TimerFilter</filter-class>
 <init-param>
 <param-name>collector</param-name>
 <param-value>/neo/io/reports/HitCollector</param-value>
 </init-param>
 </filter>

 <filter>
 <filter-name>EscenicStandardFilterChain</filter-name>
 <filter-class>
 com.escenic.presentation.servlet.CompositeFilter
 </filter-class>
 <init-param>
 <param-name>oncePerRequest</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>chain</param-name>
 <param-value>
 /com/escenic/servlet/StandardFilter
 </param-value>
 </init-param>
 </filter>

 <filter>
 <filter-name>imageVersionFilter</filter-name>
 <filter-class>com.escenic.presentation.servlet.ImageVersionFilter</filter-class>
 </filter>

 <filter>
 <filter-name>cache</filter-name>
 <filter-class>
 com.escenic.presentation.servlet.multimedia.CacheFilter

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 63

 </filter-class>
 <init-param>
 <param-name>oncePerRequest</param-name>
 <param-value>true</param-value>
 </init-param>
 </filter>

 <filter-mapping>
 <filter-name>BootstrapFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>TimerFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>EscenicStandardFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>cache</filter-name>
 <url-pattern>/multimedia/dynamic/*</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>cache</filter-name>
 <servlet-name>binaryFieldRetriever</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>

 <filter-mapping>
 <filter-name>imageVersionFilter</filter-name>
 <servlet-name>binaryFieldRetriever</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>

 <listener>
 <description>Escenic Presentation layer bootstrap listener</description>
 <listener-class>com.escenic.presentation.servlet.PresentationBootstrapper</
listener-class>
 </listener>

 <servlet>
 <servlet-name>binaryFieldRetriever</servlet-name>
 <servlet-class>com.escenic.presentation.servlet.BinaryFieldRetrieverServlet</
servlet-class>
 <init-param>
 <param-name>storage</param-name>
 <param-value>nursery://global/com/escenic/storage/Storage</param-value>
 </init-param>
 </servlet>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 64

Lines 1 through 5 make up the standard web.xml header.

The filter elements identify the servlet filters used by the publication. You can add filter elements
referencing your own custom filters here. See chapter 7 for more information about servlet filters in
general and descriptions of the filters supplied by Escenic.

The filter-mapping elements define the sequence of the filters, which is significant. The Escenic-
supplied filters should always appear in the order shown. You can insert your own filters anywhere in
the sequence so long as you do not change the sequence of the standard filters.

The welcome-file-list element contains a list of file names that will be assumed to represent
"welcome" files.

This standard web.xml file can be found in the template/WEB-INF folder of the Content Engine
distribution.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 65

13 Publication Webapp Properties

The components of a publication web application have properties that can be modified in much the
same way as Content Engine component properties. Content Engine component properties can be:

• Viewed and temporarily modified via the escenic-admin application's Component Browser
option described in Escenic Content Engine Server Administration Guide, section 2.1.15,
or

• Permanently modified by editing .properties files in one of the configuration layers described in
Escenic Content Engine Server Administration Guide, section 4.1.

You can modify the behavior of the components of a publication web application in exactly the same
way. The only difference is that web application configuration files are not layered: only one set of
configuration files is allowed, and it must be located in the web application's WEB-INF/localconfig
folder.

13.1Viewing Publication Webapp Properties
To view the current properties of a publication web application component:

1. Start a browser and go to:

http://your-server:8080/escenic-admin/

where your-server is the domain name or IP address of the server on which the Content Engine is
running.

2. Click on the Component Browser option (In the Field Support section at the bottom of the
page).

3. Click on Browse other scope and then select the name of the publication you are interested in
from the Select a scope to browse list.

The name is the context path of the web application. This can be changed by adding

<display-name>my web application</display-name>

in web.xml in your web application.

You will then see a Directory Listing section containing links that you can use to navigate the
component hierarchy, allowing you to view and temporarily modify component properties. For
general instructions on how to use the component browser, see Escenic Content Engine Server
Administration Guide, section 2.1.15.

The components that are most likely to be of interest are the filter chain processors described in
section 7.4.1. These components are all located under com/escenic/servlet.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 66

13.2Modifying Publication Webapp Properties
To modify the properties of a publication web application component you must create a .properties
file in the publication's WEB-INF/localconfig folder, and add a name=value property setting to it.
The file must have the same name and path as the component it is modifying.

For example, if you look for the PublicationResolverProcessor component of a
publication in the escenic-admin component browser, you will see that it has the path
com/escenic/servlet. To set this component's publicationName property, therefore,
you would need to create a file called WEB-INF/localconfig/com/escenic/servlet/
PublicationResolverProcessor.properties containing an entry like this:

publicationName=mypub

See section 13.3 for a simpler way of setting this particular property.

In order to see the results of changing one of these properties you must redeploy the web application
and restart the Content Engine.

13.3The default.properties File
The default.properties file provides an easy way of setting the most commonly-used publication
web application properties. Instead of creating a .properties file for each component to be
modified, you can just create a file called default.properties in a publication's WEB-INF/
localconfig folder and add name=value property settings to it.

You can only set the following properties in this way:

Component Property Name in
default.properties

com/escenic/servlet/
TemplateDispatchResolver

page forward-to-page

com/escenic/servlet/
PublicationResolverProcessor

publicationNamepublication-name

Note that the property names used in default.properties are not the same as the component
properties they set.

In order to see the results of changing one of these properties you must redeploy the web application
and restart the Content Engine.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 67

14 CAPTCHA Support

The Content Engine provides built-in support for adding CAPTCHA challenges to publication pages
that need protection from robot visitors. The CAPTCHA functionality can be configured to use
challenges provided by different CAPTCHA providers. By default, the Content Engine is configured to
use Jcaptcha. You are, however, strongly recommended to reconfigure it to use ReCaptcha instead.

14.1Configuring a CAPTCHA Provider
The following sections describe how to configure the Content Engine to use various CAPTCHA
providers.

14.1.1 ReCaptcha

ReCaptcha is an on-line service that provides CAPTCHA challenge and verifies user responses. To
use this service in one of your publications:

1. Create an account at http://recaptcha.net/

2. Add a new site to the account, specifying the domain name of the publication containing the
pages you wish to protect. ReCaptcha will then generate a private and public key pair for the
domain. You will need to use these keys in step 3 below.

3. Add a file called com/escenic/captcha/ReCaptchaProvider.properties to your
publication web application's WEB-INF/localconfig/ folder. The file must contain the
following property settings:

privateKey=your-private-key
publicKey=your-public-key

where your-private-key and your-public-key are the keys assigned to your publication domain by
the ReCaptcha service in step 2.

4. Add a file called com/escenic/captcha/CaptchaProviderFactory.properties to
your publication web application's WEB-INF/localconfig/ folder. The file must contain the
following property setting:

captchaProvider=./ReCaptchaProvider

14.1.2 Jcaptcha

The /com/escenic/captcha/CaptchaProviderFactory component is configured to use /com/
escenic/servlet/captcha/JCaptchaProvider by default, so no Content Engine configuration
is required.

To use JCaptcha from Struts, however, you need to add the following Struts configuration:

<action path="/jcaptcha"
 type="com.octo.captcha.module.struts.image.RenderImageCaptchaAction" />
<plug-in className="com.octo.captcha.module.struts.CaptchaServicePlugin"/>

http://en.wikipedia.org/wiki/CAPTCHA
http://jcaptcha.sourceforge.net/
http://recaptcha.net/
http://recaptcha.net/

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 68

14.1.3 Custom CAPTCHA Provider

As an alternative to using either Jcaptcha or ReCaptcha you can write your own CAPTCHA provider.
To do this you need to:

1. Create a provider class that implements the
com.escenic.servlet.captcha.CaptchaProvider interface.

2. Create a configuration .properties file for your provider class and add it to your publication
web application's WEB-INF/local-config folder.

3. Add a file called com/escenic/captcha/CaptchaProviderFactory.properties to
your publication web application's /localconfig/WEB-INF folder. The file must contain the
following property setting:

captchaProvider=component-path

where component-path is the path of your CAPTCHA component.

14.2Displaying Your CAPTCHA Challenge
Once you have correctly configured CAPTCHA support, the JSP code shown below can be used to add
a CAPTCHA challenge to a Struts form in your publication templates (the html: prefix in some of the
tag names identifies them as members of the standard Struts HTML tag library). The code examples
assume that you want to add the CAPTCHA challenge to a form that users will use to create blog
entries.

ReCaptcha

<html:form action="/blog/add">
 <!-- JSP code to render the form properties related to creating a blog -->

 <div class="captcha">
 <captcha:recaptchaHTML theme="red" lang="en"/>
 </div>

 <!-- The rest of the JSP code to render the form properties related to
 creating a blog goes here. -->
</html:form>

In this example, the <captcha:recaptchaHTML/> tag generates the HTML code required to display
the ReCaptcha challenge.

JCaptcha

<html:form action="/blog/add">
 <!-- JSP code to render the form properties related to creating a blog -->

 <div class="captcha">
 <label for="jcaptcha_response">Verification code: </label>
 <input id="jcaptcha_response" type="text" name="jcaptcha_response" />

 <html:image page="/jcaptcha.do"/>
 </div>

 <!-- The rest of the JSP code to render the form properties related to
 creating a blog goes here. -->

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 69

</html:form>

The input element called jcaptcha_response is the field in which the user is required to enter the
characters displayed in the CAPTCHA image. The tag <html:image page="/jcaptcha.do"/>
generates an ordinary HTML img element containing the CAPTCHA challenge image.

14.3Verifying the CAPTCHA Response
The following example contains the Java code you need to add to a custom Struts action or servlet class
in order to verify a CAPTCHA response:

Bus bus = ApplicationBus.getApplicationBus(servletContext);
CaptchaProviderFactory captchaProviderFactory =
 (CaptchaProviderFactory) bus.lookupSafe("/com/escenic/captcha/
CaptchaProviderFactory");

CaptchaProvider captchaProvider = captchaProviderFactory.getCaptchaProvider();
boolean isValidCaptchaResponse =
 captchaProvider.checkCaptchaResponse(httpServletRequest);

An alternative approach is to create a generic servlet filter that you can then use to filter all requests
that require CAPTCHA verification.

If you are using either Viz Community Expansion or the Forum plug-in then you do not need to
write your own verification code, since both of these plug-ins include Struts action classes that perform
CAPTCHA verification. For details see the documentation of these plug-ins.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 70

15 Mail a form

This component is dependent upon the 'neo/io/sevices/MailSender' component. This must be
configured first

• A html form with a certain set of mandatory and optional form elements

• A specification of a struts DynamicActionForm containing these elements

• A mapping between the form, the DynamicActionForm and a struts action

The DynamicActionForm and the action mapping is set up in struts-config.xml

15.1Create the form
The form must contain the following elements:

• recipients. Comma-separated list of email-adresses

• sender. Can also be specified in the mailSender component

• mailType. defines what content to send. Chose between these types:
text_plain,text_html,html_url,html_mixed.

• Depending on the mailType the folowing elements must be included

• text_plain: plainContent. Will be sent with content-type 'text/plain'

• text_html: plainContent and htmlContent. Will send a 'multipart/alternative' message with
plainContent as 'text/plain' and htmlContent as 'text/html' The client mailreader will choose what
content to display

• html_url: plainContent and url. Works the same way as text_html, but the 'text/html' part will
contain the content of the specified url.

• html_mixed: plainContent,url and attachments Works the same way as html_url, but attachments
can be included (comma-separated list of filenames)

• The following elements are optional

• -subject

• -ccRecipients

• -bccrecipients

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html:form action="sendform?method=sendFormAsMail">
 <html:hidden property="mailType" value="text_plain|text_html|html_url|html_mixed"/>
 <html:hidden property="plainContent" value="This is plain text"/>
 <html:hidden property="htmlContent" value="this is html"/>
 <html:hidden property="url" value="http://thisisaurl.com/"/>
 <html:hidden property="attachments" value="c:\attachment.txt,c:\attachment2.txt"/>
 recipients: <html:text property="recipients" size="20" value=""/>

 cc recipients: <html:text property="ccRecipients" size="20" value=""/>

 bcc recipients: <html:text property="bccRecipients" size="20" value=""/>

 Subject: <html:text property="subject" size="20"/>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 71

 <p/>
 <html:submit></html:submit>
</html:form>

15.2edit struts-config.xml
Add the following to the struts-config.xml in the 'form-beans' section.

<form-bean name="mailForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property name="subject" type="java.lang.String"/>
 <form-property name="sender" type="java.lang.String"/>
 <form-property name="recipients" type="java.lang.String"/>
 <form-property name="ccRecipients" type="java.lang.String"/>
 <form-property name="bccRecipients" type="java.lang.String"/>
 <form-property name="mailType" type="java.lang.String"/>
 <form-property name="url" type="java.lang.String"/>
 <form-property name="plainContent" type="java.lang.String"/>
 <form-property name="htmlContent" type="java.lang.String"/>
 <form-property name="attachments" type="java.lang.String"/>
 </form-bean>

and the following in the 'action-mappings' section

<action path="/sendform"
 input="/sendform.jsp"
 parameter="method"
 name="mailForm"
 type="neo.servlet.MailFormSender"
 validate="false"
 scope="request">
 <forward name="success" path="/success.jsp" redirect="true"/>
 <forward name="failure" path="/failure.jsp" redirect="true"/>
 </action>

Edit the paths to reflect your form.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 72

16 Representations

The Content Engine allows you to define different representations of some types of field content,
so that the field content can be re-used in different ways. Currently, representations are used in
only way: to define crop masks for images (a cropped image being regarded as one of many possible
representations of the original image).

16.1Defining Image Representations
Crop masks can be added to an image content type by adding a basic field containing
representation elements to the content type definition in the content-type resource.

Here is a simple image content type definition:

 <content-type name="image">
 <ui:label>Picture</ui:label>
 <ui:description>An image</ui:description>
 <ui:title-field>name</ui:title-field>
 <panel name="default">
 <ui:label>Image content</ui:label>
 <field mime-type="text/plain" type="basic" name="name">
 <ui:label>Name</ui:label>
 <ui:description>The name of the image</ui:description>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="description">
 <ui:label>Description</ui:label>
 </field>
 <field mime-type="text/plain" type="basic" name="alttext">
 <ui:label>Alternative text</ui:label>
 </field>
 <field name="binary" type="link">
 <relation>com.escenic.edit-media</relation>
 <constraints>
 <mime-type>image/jpeg</mime-type>
 <mime-type>image/png</mime-type>
 </constraints>
 </field>
 </panel>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="caption" type="basic" mime-type="text/plain"/>
 <field name="alttext" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

You can add crop mask support by adding a second panel with the following content:

 <panel name="crop-masks">
 <ui:label>Cropped Versions</ui:label>
 <field mime-type="application/json" type="basic" name="representations">
 <ui:label>Image Versions</ui:label>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 73

 <rep:representations type="image-versions">
 <rep:representation name="thumbnail">
 <rep:output width="100" height="100"/>
 <rep:crop/>
 <rep:resize/>
 </rep:representation>
 <rep:representation name="narrow">
 <rep:output width="500" height="400"/>
 <rep:crop/>
 <rep:resize/>
 </rep:representation>
 <rep:representation name="wide">
 <rep:output width="1000" height="800"/>
 <rep:crop/>
 <rep:resize/>
 </rep:representation>
 </rep:representations>
 </field>
 </panel>

Note that the field's mime-type attribute must be set to application/json.

The effect of this addition will be that a "Cropped Versions" panel will now appear in Content Studio
when a content item of this type is edited. The panel will display the original image three times, with
a red crop mask superimposed on each copy. The Content Studio will be able to move the crop masks
around and resize them in order to select the precise image content required. Although the crop masks
are sizable, they will retain their defined aspect ratio.

The representation elements in the above example belong to the http://
xmlns.escenic.com/2009/representations namespace. The conventional prefix
for this namespace is rep, as used in the examples above. In order for the example to work,
the http://xmlns.escenic.com/2009/representations must be declared and
assigned to the rep prefix. You can do this by adding the attribute xmlns:rep="http://
xmlns.escenic.com/2009/representations" to the root element of the content-type
resource.

For using crop mask binary field constraints for mime-type only supports image/jpeg, image/
png and image/gif types. As for example,

 <constraints>
 <mime-type>image/jpeg</mime-type>
 <mime-type>image/png</mime-type>
 <mime-type>image/gif</mime-type>
 </constraints>

16.1.1 Derived Representations

Sometimes you want Content Engine users to be able to create a set of representations that have
identical contents (that is, use the same crop mask), but have different output sizes for use in different
contexts. You can do this by defining derived representations. A derived representation is a
representation that is based on another representation. It gets its crop mask from the representation it
is based on, but can have a different output size.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 74

The crop mask example shown in the previous section can be simplified by replacing the wide
representation with a derived presentation as follows:

 <panel name="crop-masks">
 <ui:label>Cropped Versions</ui:label>
 <field mime-type="application/json" type="basic" name="representations">
 <ui:label>Image Versions</ui:label>
 <rep:representations type="image-versions">
 <rep:representation name="thumbnail">
 <rep:output width="100" height="100"/>
 <rep:crop/>
 <rep:resize/>
 </rep:representation>
 <rep:representation name="narrow">
 <rep:output width="500" height="400"/>
 <rep:crop/>
 <rep:resize/>
 </rep:representation>
 <rep:representation name="wide" based-on="narrow">
 <rep:output width="1000"/>
 </rep:representation>
 </rep:representations>
 </field>
 </panel>

With this set-up, Content Studio users will no longer need to (or be able to) define a crop mask for the
wide representation. This representation will always have exactly the same contents as the narrow
representation: it will just be output at twice the width and height.

16.2Accessing Image Representations
A field defined in this way in the content-type resource will be presented as a complex field (that is, a
map) in PresentationArticle beans. Each item in the map holds a representation, indexed by its
name. To access the representations in a PresentationArticle bean containing a content item of
the type defined above, for example, you could use the following expressions:

${image.fields.representations.value.thumbnail}
${image.fields.representations.value.narrow}
${image.fields.representations.value.wide}

Each representation is itself a map containing the following fields:

width
The width of the crop mask in pixels.

height
The height of the crop mask in pixels.

sourcewidth
The width of the original image in pixels (only present in derived representations).

sourceheight
The height of the original image in pixels (only present in derived representations).

href
The URL of this representation.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 75

crop
Information about the crop mask.

To include an image representation in a template, therefore, you would do something like this:

<img
 src="${image.fields.representations.value.thumbnail.href}"
 width="${image.fields.representations.value.thumbnail.width}"
 height="${image.fields.representations.value.thumbnail.height}"/>

The sourcewidth and sourceheight values included in derived representations makes it possible
to calculate how much of the original image is included in the representation. This information might
be used to estimate the probable quality of the cropped image and determine how it is presented in the
output.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 76

17 Restricting Access to Content

You may sometimes want to be able to restrict access to all or part of a publication. It may be a simple
case of restricting access to registered users, or you may wish charge for access to certain content.
The Content Engine's neo.xredsys.content.agreement classes provide support for this kind of
functionality. They do not presuppose any particular method of access restriction, but simply provide
an interface for associating an access control method with all or part of a publication.

Access control can be switched on or off per section in Web Studio, by setting the following section
properties:

Is agreement required
Must be set to Yes.

Agreement information
Must specify the name of a correctly configured AgreementPartner (see below).

If these properties are correctly set, then access to the section is denied to unauthorized readers.
For a description of Web Studio and how to set these properties, see Escenic Content Engine
Publication Administrator Guide, section 3.4.1.1.

Access control is configured with the /neo/io/managers/AgreementManager component. To set
up access control, you need to:

• Create a Java class that implements the interface
neo.xredsys.content.agreement.AgreementPartner (see Javadoc for details). The class
must have a service() method that performs the required access control check and either allows
or denies access.

• Create a component from your class by adding a .properties file to one of your configuration
layers (most likely the common configuration layer located in /etc/escenic/engine/common).

• In the same configuration layer, edit the file /neo/io/managers/
AgreementManager.properties and add the line:

agreementPartner.component-name=component-path

where:

• component-name is the name specified in the Agreement information property of the
protected sections in Web Studio.

• component-path is the path of the component you added to the configuration layer.

This line tells the AgreementManager to create a component called component-name based on
the information it finds in component-path.properties.

Your Java class must of course also have been compiled, packaged in a JAR file and added to the
Content Engine's classpath.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 77

17.1Basic Password Authentication Example
The AgreementPartner class you implement can exercise any kind of access control you choose.
It can perform straightforward password protection, require payment or provide an interface to an
external micro-payment system.

This example shows a very simple implementation of AgreementPartner that provides basic
password authentication.

package com.mycompany.escenic.agreements;
import neo.xredsys.content.agreement.*;
public class PasswordAgreement implements AgreementPartner {
 AgreementConfig config;
 String realm = "Undefined";
 java.util.Map users = new java.util.HashMap();
 public PasswordAgreement() {
 config = new AgreementConfig();
 config.setAuthentication(true);
 }
 public AgreementConfig getAgreementConfig() {
 return config;
 }
 public void setRealmName(String newRealm) {
 realm = newRealm;
 }
 public String getRealmName() {
 return realm;
 }
 public void addUser(String user, String password) {
 users.put(user, password);
 }
 public java.util.Set getUsers() {
 return users.keySet();
 }
 public void service(AgreementRequest request, AgreementResponse response) {
 String username = request.getUserName();
 if (username == null || username.equals("")) {
 response.setBasicAuthenticationRealm(realm);
 return;
 }
 String password = (String) users.get(username);
 if (password == null || request.getCredentials() == null) {
 response.setBasicAuthenticationRealm(realm);
 return;
 }
 if (!password.equals(request.getCredentials())) {
 response.setBasicAuthenticationRealm(realm);
 }
 }
}

And here is the content of a .properties file that can be used to configure a PasswordAgreement
component:

$class=com.mycompany.escenic.agreements.PasswordAgreement

realmName=TestRealm
user.johndoe=johnspassword

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 78

user.someone=secret

The first line specifies the class that is to be instantiated, and the following lines contain th values
of properties that are to be set. After instantiating the class, the Content Engine automatically
searches the rest of the file for properties that it can set using the class's methods. In this case it sets
realmName by calling PasswordAgreement's setRealmName() method, and fills the users
HashMap by calling addUser() for every element of the mapped property user.

For detailed information about the .properties file format, see Escenic Content Engine Server
Administration Guide, section 4.2.

In addition to these methods that allow instances to be automatically configured by the Content
Engine, the class contains two other important components:

• The getAgreementConfig() method, which returns an AgreementConfig instance to the
caller. This method is required by the AgreementPartner interface. The AgreementConfig
instance is used by the Content Engine to determine what items of information the
AgreementPartner requires in order to perform authorization. In this example, the
AgreementConfig's authentication property is set to true.

 public PasswordAgreement() {
 config = new AgreementConfig();
 config.setAuthentication(true);
 }

authentication is defined here as meaning basic password authentication, so this setting
indicates that the PasswordAgreement requires a realm name, user name and password in
order to carry out authentication. AgreementConfig has other methods that you can use to add
details of other information required for authorization. If, for example, successful authorization
depends on the presence of one or more cookies on the user's computer, you must add this
information using the AddCookieName() method - otherwise the service() method won't have
access to the cookies.

• The service() method, which is also required by the AgreementPartner interface. This is the
method that carries out the actual authorization:

 public void service(AgreementRequest request, AgreementResponse response) {
 String username = request.getUserName();
 if (username == null || username.equals("")) {
 response.setBasicAuthenticationRealm(realm);
 return;
 }
 String password = (String) users.get(username);
 if (password == null || request.getCredentials() == null) {
 response.setBasicAuthenticationRealm(realm);
 return;
 }
 if (!password.equals(request.getCredentials())) {
 response.setBasicAuthenticationRealm(realm);
 }

The user's authorization data is passed in as an AgreementRequest object and compared with
the user names and passwords in the users property. If no match is found, then the authentication
request is rejected by setting the realm property of the AgreementResponse object that was
supplied in the response parameter. If this property is not set, then authentication succeeds and
the user will be granted access to the protected content. If it is set, then authentication fails and the
application will carry out an appropriate action such as displaying a login page.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 79

17.1.1 Using The Example

To actually make use of this example, you need to do the following:

1. Write and compile the PasswordAgreement class. In order to compile the class you need
engine-core-5.6.13.183224.jar in your classpath.

2. Create a .properties file like the one listed in section 17.1 and save it somewhere in a
configuration layer. Lets say you save it as /agreements/PasswordAgreement.properties
in your common layer (that, is /etc/escenic/engine/common/agreements/
PasswordAgreement.properties in a standard installation).

3. Edit /neo/io/managers/AgreementManager.properties in the same configuration layer
and add the line:

agreementPartner.test=/agreements/PasswordAgreement

4. In Web Studio, select the publication sections you want to be password-protected and set:

• Is agreement required to Yes.

• Agreement information to test.

It should now not be possible to access these sections without entering one of the username/password
combinations specified in /agreements/PasswordAgreement.properties.

This example is provided purely to illustrate how the Content Engine's agreement system works.
The PasswordAgreement class is deliberately simplified and not considered suitable for
production use.

17.2Removing Access Control
Note that you cannot "switch off" access control by simply removing the agreementPartner line
from /neo/io/managers/AgreementManager.properties. If you do that you will find that all
the sections that were previously protected by this agreement partner are now completely inaccessible.
The only way to remove the access control is to remove it explicitly from each protected section in Web
Studio.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 80

18 Collection Fields

A collection field is a content item field type that provides a simple means of integrating content
published via Atom feeds into your content items. You can therefore use collection fields for two
purposes:

• To integrate external Atom-published content (from a public feed, for example)

• To integrate internal data by publishing it as an Atom feed that you can then access from Content
Studio via a collection field

A collection field is initially displayed as a "search as you type" text field in Content Studio. When the
user starts to type in the field, a list of Atom entries with matching titles is displayed below the field.
When the user selects one of the listed entries:

• A value from one of the entry's fields is stored as the collection field's value

• The value is displayed in the field as a token: a user interface component that looks like this:

18.1Defining and Using a Collection Field
A collection field is defined in the content-type resource as a field element with the type
attribute collection. It also has a src attribute for specifying the data source, which you can use in
two different ways:

Only using an Atom feed
In this case, you set the src attribute to point directly to an Atom feed. When the user types in
the collection field, Content Studio searches through the entries in this feed and displays the
results in a list below the field.

Using OpenSearch
In this case, you set the collection field's src attribute to point an Atom feed that contains a
search link referencing an OpenSearch document. If the specified feed contains a link to an
OpenSearch document, then the entries in the feed are not used (it can, in fact, be an empty
feed). Instead, Content Studio retrieves the OpenSearch document and composes a query URL
by combining the search template it contains with whatever the user types in the collection field.
It displays the results of this search in the list below the field. In order for this method to work,
the composed search query must return an Atom feed.

The text items displayed in the "search as you type" field are the title elements of entries that match
the string the user has typed. When the selects one of the options that are offered, a value is extracted
from the corresponding Atom entry and stored as the collection field's value. The extracted value
is taken from one of the Atom entry's sub elements, as specified by the field element's select
attribute. This attribute can have one of the following values:

content
The field value is taken from the Atom entry's content element.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 81

title
The field value is taken from the Atom entry's title element (that is, it will be the same value
as is actually displayed in the field).

locator
The field value is taken from a proprietary viz:locator element in the Atom entry. (Not
currently used.)

link
The field value is taken from one of the Atom entry's link elements. An additional linkrel
attribute specifies which link attribute is to be used.

For a full description of the collection field element, see Escenic Content Engine Resource
Reference, section 2.7.5.

The following example shows a collection field definition that allows the Content Studio user to select
images from a Flickr public feed:

<field name="pwImage"
 type="collection"
 src="http://api.flickr.com/services/feeds/photos_public.gne?
tags=creativecommons,norway"
 select="link"
 linkrel="enclosure"
 mime-type="text/plain">
 <ui:label>Images of Norway</ui:label>
</field>

This is a simple test you can use to see how the field works. If you add a field like this to a content
type and then try using it in Content Studio, you will see that image descriptions taken from the entry
title elements are displayed under the input field like this:

If you select one of the displayed options, then a value is taken from the related Atom entry, and stored
as the field's value. Exactly which entry element the value is copied from is determined by the field
definition's select element. In this case it was set to "link", which means the value will be copied
from one the Atom entry's link elements. Since an Atom entry can contain many link elements, an
additional linkrel element is required to specify which link element to use: in this case, the one with
a rel attribute set to "enclosure".

You can retrieve collection field values in your publication templates using JSTL as follows:

Note the extra value component in the above example. This is always required when retrieving
values from collection fields.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 82

18.2Using Your Own Feeds
You don't have to use public Atom feeds, you can create your own. The collection field provides
you with a simple standards-based means of integrating data from other systems into your Escenic
publications. All you have to do is generate a correctly-formatted Atom feed in which:

• The title element of each entry contains the label that you want to appear in the field.

• Some other element of each feed contains the data item you want to store in the field.

You can make the drop-down displayed when the user starts typing more informative by including the
following additional elements in your feed entries:

summary elements
If your entries contains summary elements, then their content will be displayed below entry
titles in the collection field drop down.

"top" link elements
If you include link elements with the Vizrt proprietary relation http://www.vizrt.com/
types/relation/top, in your entries, then content of the link elements' title attributes
will be displayed before entry titles in the collection field drop down. Link elements with this
relation appear in some of the feeds returned by the Content Engine web service. In section
feeds, for example, the "top" link references the publication and in tag feed it references the tag
collection).

Here, for example, is a very simple feed:

<?xml version="1.0"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <author>
 <name>my-site.com</name>
 </author>
 <id>http://my-host/my/first/feed</id>
 <link rel="self" href="http://my-host/my-first-atom-feed" type="application/atom
+xml"/>
 <updated>2012-07-26T12:34:25.323Z</updated>
 <title type="text">My first feed</title>
 <entry>
 <id>http://my-host/my/first/entry</id>
 <title type="text">One</title>
 <content type="text">1</content>
 <summary type="text">The first</summary>
 <updated>2012-07-26T12:34:25.323Z</updated>
 </entry>
 <entry>
 <id>http://my-host/my/second/entry</id>
 <title type="text">Two</title>
 <content type="text">2</content>
 <summary type="text">The second</summary>
 <updated>2012-07-26T12:34:25.323Z</updated>
 </entry>
 <entry>
 <id>http://my-host/my/third/entry</id>
 <title type="text">Three</title>
 <content type="text">3</content>
 <summary type="text">The Third</summary>
 <updated>2012-07-26T12:34:25.323Z</updated>
 </entry>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 83

</feed>

If this is referenced by the following collection field definition:

<field name="feedTest"
 type="collection"
 src="http://my-host/my-first-atom-feed"
 select="content"
 mime-type="text/plain">
 <ui:label>My first feed</ui:label>
</field>

then Content Studio users will be able to choose between the values "One", "Two" and "Three" when
filling in the field. Since the entries contain summary elements, each option displayed in the collection
field drop-down will consist of two lines ("One" and "The first", for example).

Selecting "One" will cause the value 1 to be stored in the field.

You can retrieve this field's value in your publication templates as follows:

${article.fields.feedTest.value}

18.2.1 Making an OpenSearch-based Feed

The basic Atom feed mechanism described above works fine if the Atom feed returned by the src
attribute is not too large. If the data set you want to provide access to is very large, however, then it
will soon become impractical. Using an OpenSearch-based feed solves this problem. An example of
this kind of feed is actually included with the Content Engine: the Content Engine web service includes
a special section feed that provides information about all the sections to which the current user has
access.

This feed is available at the following URL:

http://host-ip-address/webservice/escenic/section

If you follow this link at your installation you will be required to log in, and then get an empty feed like
this returned:

<?xml version="1.0"?>
<feed>
 <author>
 <name>Escenic Content Engine</name>
 </author>
 <id>http://host-ip-address/webservice/escenic/section</id>
 <link rel="self"
 href="http://host-ip-address/webservice/escenic/section"
 type="application/atom+xml"/>
 <updated>2012-09-25T10:51:02.419Z</updated>
 <title type="text">Dummy Atom Feed</title>
 <link rel="search"
 href="http://host-ip-address/webservice/open-search/section-search-
description.xml"
 type="application/opensearchdescription+xml"/>
</feed>

If you follow the (highlighted) search link, then an OpenSearch document like this is returned:

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 84

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
 <ShortName>Section Search</ShortName>
 <Description>Search for sections</Description>
 <Url type="application/atom+xml" template="http://host-ip-address/webservice/
escenic/section/search/{searchTerms}"/>
 <LongName/>
 <Developer/>
 <Attribution/>
 <SyndicationRight/>
 <AdultContent>false</AdultContent>
 <OutputEncoding>UTF-8</OutputEncoding>
 <InputEncoding>UTF-8</InputEncoding>
</OpenSearchDescription>

The important part of this document is the highlighted URL template. You can search for sections by
simply replacing the {searchTerms} placeholder with a search string and submitting the resulting
URL. The results of the search are returned in an Atom feed that looks something like this:

<feed xmlns:ece="http://www.escenic.com/2007/content-engine" xmlns:dcterms="http://
purl.org/dc/terms/"
 xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/" xmlns="http://
www.w3.org/2005/Atom">
 <title>+(acl:"section\:4225" acl:"publication\:723") +(+a*
 +contenttype:com.escenic.section) -state:deleted</title>
 <author>
 <name>Escenic Content Engine</name>
 </author>
 <link rel="self" type="application/atom+xml" href="http://host-ip-address/
webservice/escenic/section/search/a?pw=1&c=2"/>
 <link rel="first" type="application/atom+xml" href="http://host-ip-address/
webservice/escenic/section/search/a?pw=1&c=2"/>
 <link rel="last" type="application/atom+xml" href="http://host-ip-address/
webservice/escenic/section/search/a?pw=1&c=2"/>
 <updated/>
 <id>urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6</id>
 <opensearch:totalResults>2</opensearch:totalResults>
 <opensearch:startIndex>0</opensearch:startIndex>
 <opensearch:itemsPerPage>2</opensearch:itemsPerPage>
 <opensearch:Query role="request"
 searchTerms="+(acl:"section\:4225" acl:"publication\:723") +(+a*
 +contenttype:com.escenic.section) -state:deleted" startPage="0"/>
...
 <entry>
 <title>News</title>
 <link rel="edit" href="http://host-ip-address/webservice/escenic/section/3984"/>
 <link rel="self" href="http://host-ip-address/webservice/escenic/section/3984"/>
 <link href="http://host-ip-address/webservice/publication/dev.nightly/"
 rel="http://www.vizrt.com/types/relation/top" type="application/atom+xml; type=entry"
 title="dev.nightly"/>
 <id>urn:com.escenic.section:3984</id>
 <dcterms:created>2008-05-15T06:55:45Z</dcterms:created>
 <published>2012-02-02T13:16:43Z</published>
 <updated>2012-02-02T13:16:43Z</updated>
 <summary ui:align="right">tps / News</summary>
 <ece:state>published</ece:state>
 <ece:type>com.escenic.section</ece:type>
 <ece:home>

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 85

 <ece:uri>http://host-ip-address/webservice/content/com.escenic.section/</
ece:uri>
 <ece:name/>
 </ece:home>
 <ece:last_edited_by/>
 </entry>
...
</feed>

You can define a collection field to use this service as follows:

<field name="sectionSearch"
 type="collection"
 src="escenic/section"
 select="link"
 linkrel="self"
 mime-type="text/plain">
 <ui:label>Section</ui:label>
</field>

Note that the src attribute is set to just escenic/section: if you enter a relative URL here, then
it is resolved relative to the URL of the Content Engine web service.

When a content item containing this kind of collection field is opened in Content Studio, Content
Studio follows the src attribute URL, and then follows the search link in the empty Atom feed in order
to retrieve the OpenSearch document. As soon as the user starts to type in the sectionSearch field,
Content Studio:

1. Combines the typed character(s) with the search template.

2. Submits the resulting search URL.

3. Displays the titles from the returned Atom feed entries in a list below the field.

A new search is submitted each time a new character is entered in the field, giving the same "search as
you type" behavior as with a simple Atom feed set up.

You can retrieve this field's value in your publication templates as follows:

${article.fields.sectionSearch.value.value.name}

Since ${article.fields.sectionSearch.value.value} in this case retrieves a complete
section object, you can in fact substitute name in the above example with the name of any other section
property you are interested in, for example:

${article.fields.sectionSearch.value.value.lastModified}

18.2.2 Feed and OpenSearch MIME Types

If you are generating your own Atom feeds or OpenSearch documents for use with collection fields,
then you must ensure that they are served with the correct MIME types. These are:

• application/atom+xml for an Atom feed.

• application/opensearchdescription+xml for an OpenSearch document.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 86

If a feed or OpenSearch document is served with the wrong MIME type then when any content item
containing a collection field that references it is opened, Content Studio logs an exception and the field
will not work.

18.3Using a Content Engine Proxy Service
It is a good idea to set up a Content Engine proxy service for accessing external Atom feeds rather
accessing them directly. The advantages of doing this are:

• It simplifies firewall configuration, since Content Studio and other Content Engine clients can
always access the Content Engine web service. You then only need to make sure that the Content
Engine itself has access to the external Atom feeds.

• You can ensure that any sensitive information such as domain credentials are removed from
requests before they are forwarded.

• You can insert any authentication credentials that may be required by target hosts before requests
are forwarded.

For detailed information about Content Engine proxy services and how to create them, see chapter 19.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 87

19 Content Engine Proxy Services

The Content Engine can provide Content Studio and other Content Engine clients with proxied access
to specified resources outside the Content Engine's own domain. Such a proxy service can manipulate
HTTP requests before they are forwarded to the target host. The service can, for example:

• Remove header fields

• Add header fields

• Modify the request body

Using such proxy services provides centralized control over access to external resources and has a
number of advantages:

• It simplifies firewall configuration, since Content Studio and other Content Engine clients can
always access the Content Engine web service. You then only need to make sure that the Content
Engine itself has access to the external resources.

• You can ensure that any sensitive information such as domain credentials are removed from
requests before they are forwarded.

• You can insert any authentication credentials that may be required by target hosts before requests
are forwarded.

A proxy service is defined by associating a service name with a URL. The service is then accessible to
Content Studio or any other Content Engine web service client at a local URL formed by appending the
service name to the URL http://content-engine-domain/webservice/escenic/proxy/. If, for
example, you define a proxy service with the name vizrt that points to http://www.vizrt.com,
then:

• A request sent to http://content-engine-domain/webservice/escenic/proxy/vizrt will
return http://www.vizrt.com.

• A request sent to http://content-engine-domain/webservice/escenic/proxy/vizrt/
products will return http://www.vizrt.com/products.

A content engine proxy service is intended to provide centrally controlled access to external
resources, not to support browser-like activity. So, for example, following a link in an HTML
resource accessed via a proxy service would result in a direct, unproxied request being sent.

19.1Defining a Proxy Service
To define a proxy service you need to add a configuration file called configuration-root/com/
escenic/webservice/proxy/ProxyResourceConfig.properties to one of your
configuration layers and add the following settings:

filterHeaders=list
where list is a comma-separated list of header field names that you want to be removed
from the request before it is forwarded. The list should normally include at least one name -
Authorization. This ensures that Content Engine authentication data is removed from the
header.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 88

serviceMapping.name=url
where:

• name is the name of the proxy service you want to define.

• url is the URL of the target resource represented by the service.

The file can contain any number of serviceMapping.name entries, each representing a different
proxy service.

A ProxyResourceConfig.properties file containing two service definitions might look like this:

filterHeaders=Authorization,Header0
serviceMapping.myservice1=http://www.myservice1.com/
serviceMapping.myservice2=http://www.myservice2.com/

19.2Defining a Proxy Service Filter
By defining a proxy service filter you can modify the request forwarded by a proxy service in the
following ways:

• Remove specified header fields (in addition to any header fields removed by the filter defined in
ProxyResourceConfig.properties).

• Add specified header fields.

• Replace specified strings in the body of the request.

To define a proxy service filter you need to add a configuration file called configuration-root/com/
escenic/webservice/proxy/ProxyResourceFilterConfig.properties to one of your
configuration layers and add one setting to it:

serviceConfigMapping.name=path
where:

• name is the name of the proxy service for which you want to a filter.

• path is the relative path of the configuration file in which the filter is defined.

You can add several such entries, one for each proxy service you want to filter. For example:

serviceConfigMapping.myservice1=./MyService1Filter
serviceConfigMapping.myservice2=./MyService2Filter

You then need to create the actual filter configuration files you have referenced. In the
case of the above example, you would need to create two files in the same folder as your
ProxyResourceConfig.properties file:

configuration-root/com/escenic/webservice/proxy/MyService1Filter.properties
configuration-root/com/escenic/webservice/proxy/MyService2Filter.properties

A filter configuration file can contain the following settings:

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 89

filterHeaders=list
where list is a comma-separated list of header field names that you want to be removed from
the request before it is forwarded. This filter is applied in addition to any filter specified in your
ProxyResourceConfig.properties file.

addHeader.name=value
where:

• name is the name a header field you want to add to the request before it is forwarded

• value is the value to be written to the header field

You can specify several such settings in order to add more than one header field to the request.

replaceMapping.pattern=replacement
where:

• pattern is a sequence of characters in the request body that are to be replaced.

• replacement is the sequence of characters that is to replace pattern.

Only the first occurrence of the specified pattern is replaced.??

Here is an example filter configuration file that:

• Removes two headers called BadHeader and WorseHeader

• Adds a header called GoodHeader

• Replaces the string credentials-here with the string verysecretpassword

filterHeaders==BadHeader,WorseHeader
addHeader.GoodHeader=very.useful.value
replaceMapping.credentials-here=verysecretpassword

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 90

20 Using Solr

All content items added to the Content Engine are submitted to Solr for indexing. You can therefore
use Solr to add search functionality and other related functionality to your publications.

This chapter contains basic information about how the Content Engine indexes content items (that
is, what information it submits to Solr for indexing) and a few examples of how you can use Solr for
various purposes. It is not intended to be any kind of general guide to using Solr. You should have a
general understanding of Solr before reading this chapter, and refer to Solr documentation for detailed
descriptions of Solr functionality. A good place to start is here:

http://lucene.apache.org/solr/tutorial.html

20.1What Gets Indexed
Content items are indexed when they are first created, whenever they are modified, and whenever re-
indexing is explicitly requested by the administrator. When a content item is indexed, the Content
Engine submits a specially-formatted XML document to Solr. This document contains a set of named
field elements, that Solr can then index. The fields in these documents are described in the following
sections.

20.1.1 Standard Fields

The documents submitted for indexing by the Content Engine always contain the following fields:

objectid
The content item's database ID.

publication
The name of the publication to which the content item belongs.

author
The name of the content item author.

creator
The name of the content item creator.

last_edited_by
The name of the last user to edit the content item.

state
The current state of the content engine (draft, published, deleted or approved)

source
The content item's source property.

sourceid
The content item's sourceid property.

contenttype
The name of the content item's content type.

http://lucene.apache.org/solr/tutorial.html

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 91

section
The database ID?? of one of the sections to which the content item belongs. This field may
appear several times, once for each section to which the content item belongs.

home_section
The database ID?? of the content item's home section.

home_section_name
The name of the content item's home section.

creationdate
The date and time at which the content item was created.

lastmodifieddate
The date and time at which the content item was last modified.

activatedate
The date and time at which the content item was/will be activated.

expiredate
The date and time at which the content item expired/will expire.

20.1.2 Content Type-dependent Fields

In addition to the standard fields, an index document contains one field for each field defined in a
content item's content-type definition. These fields' names are composed from the field names and
types defined in the content-type resource, as follows:

field-name_type-name

where:

field-name
is the name of the field as defined in the content-type resource. In the special case of the
title field (the field designated as the title field with the ui:title-field element), title is
always used, irrespective of the the field's actual name.

type-name
is derived from the field type defined in the content-type resource as follows:

content-type Field Type type-name

basic text

number double

boolean b

enumeration enum

date date

link link

schedule start_tdate and end_tdate

For example, a content type with the following field definitions in the content-type resource:

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 92

 <ui:title-field>headline</ui:title-field>
 <panel name="main">
 <field mime-type="text/plain" type="basic" name="headline"/>
 <field mime-type="text/plain" type="basic" name="summary"/>
 <field mime-type="application/xhtml+xml" type="basic" name="body"/>
 <field type="number" name="score"/>
 </panel>

will result in the following Solr field names:

title_text (this is actually the headline field, which has been designated the title field)
summary_text
body_text
score_double

20.1.3 Tag-related Fields

If a content item has been tagged, then its index document will contain two additional fields for each
tag:

• The first field has a name of the form:

structure_facet

where structure is the name of the tag structure to which the tag belongs, converted to lower
case. The suffix facet reflects the fact that the content of the field is not a tag name such as
bangkok but a tag URI. All Content Engine tags are identified by URIs internally, not by their
external labels (which are not necessarily unique).

• The second field is called classification_parent_path and contains the tag's
path. If, for example, the tag bangkok belongs to a hierarchical tag structure, then it's
classification_parent_path field would contain the URIs of its ancestor tags asia and
thailand, separated by spaces.

20.2How It Is Indexed
Which of the various fields submitted for indexing are actually indexed, and how they are indexed
determines what kinds of searches are possible. You can only do date range searches on fields that
have been expressly indexed as dates, for example, and you can only search for individual words in
fields that have been indexed as text (rather than string) data.

How your content items are indexed is controlled by the Solr schema. A default Solr schema,
schema.xml is supplied with the Content Engine, and is used to provide the search functionality
required by Content Studio. When you implement search functionality for your publications you can
use this schema as a starting point, but are recommended to modify it, since it is unlikely to be well
suited to general-purpose search. For further information about this, see Escenic Content Engine
Server Administration Guide, section 5.2.2.

20.3Example Searches
This section simply provides some examples of things you can do with Solr on a Content Engine web
site. The examples are based on the default schema.xml supplied with the Content Engine. The

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 93

examples are shown as HTTP requests that can be submitted directly to your Solr server. The basic
format of such a request is:

http://your-host/solr/select?query-parameters

where:

your-host
is the host name or IP address of the host on which your Solr server is running

query-parameters
is an ampersand-separated list of query parameters. There are many query parameters you can
use to control Solr. The parameters used in these examples include:

q=query
The query itself, for example:

q=london
Return all documents containing "london" in any indexed field

q=city:london
Return all documents containing "london" in the city field

q=*:*
Return all documents

wt=writer-type
Determines the format of the returned data. For example:

q=xml
Return XML data

q=json
Return JSON data

rows=integer
Determines the number of rows to return.

facet=boolean
Specifying facet=true switches faceting on for this query.

facet.field=field-nam
Specifies a field on which faceting is to be performed. This parameter can be specified
several times in the same query.

20.3.1 Faceted Searching

Solr supports faceted searching. Faceted searching is a very useful extension to basic search
functionality that allows you group search results in useful ways and perform simple analyses of
database content. For an introduction to Solr's faceted search functionality and how to use it, see
http://wiki.apache.org/solr/SolrFacetingOverview.

In order to use faceted searching with the Content Engine you must enable it as follows:

1. Add the following line to configuration-root/com/escenic/classification/
IndexerPlugin

enableFacets=true

2. Restart the application server.

http://wiki.apache.org/solr/SolrFacetingOverview

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 94

3. Re-index the search engine in order to enable faceted search for existing content items.

Note that re-indexing may take a long time.

20.3.1.1 Content Items per Publication

The following query will return XML data containing the numbers of content items in each publication
at a site:

http://your-host/solr/select?q=*:*&wt=xml&rows=0&facet=true&facet.field=publication

20.3.1.2 Tags Related to a Search

At an installation with a tag structure called Topics, the following query will return:

• Information about the first 20 content items containing the word "christmas" in the title field

• A list of the Topics tags attached to all content items containing the word "christmas" (not just the
first 20), and how many content items are tagged with each tag.

http://your-host/solr/select?
q=christmas&wt=xml&rows=20&facet=true&facet.field=topics_facet

The tags related to a search can be used to:

• Provide links in the search result that allow the user to narrow the search results. A user who is
interested in the history of Christmas, for example might click on a "History" link to see a list of
items that both match the search and are tagged with the keyword "History".

• Generate a tag cloud for the search. The faceting results include the number of content items tagged
with each tag, which can be used to determine the relative sizes of the links in the cloud.

The index fields generated for tag structures always have lower case names. So even though the
tag structure is called Topics, the corresponding index field is called topics_facet. The above
query will not work if the field name Topics_facet is used.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 95

21 Content Item Staging

Content item staging simplifies the process of working with published content items. It is enabled by
default and you are recommended to use it.

Without content item staging, any changes made to a published content item are published as soon
as they are saved. Users who want to make changes "in private" before publishing are forced to work
around this limitation in some way - for example by working on a copy and then copying the final
changes into the published content item. Such workarounds are both time-consuming and error-
prone.

Content item staging makes such workarounds unnecessary. When a user saves any changes to a
published content item, the content item is automatically duplicated: a new draft version of the
content item is created and the changes are saved in this draft version. The published version remains
unmodified. From this point forward, whenever the content item is opened in Content Studio, it is this
revised draft that users see. Visitors to the site, however, still see the unmodified published version.

Working on a revised draft in Content Studio is just the same as working on a draft that has never
been published. It can be moved through the submitted and approved states in the same way as
an unpublished content item, and published in exactly the same way as the original version. When a
revised version is published, it replaces the original published version and site visitors see the revised
version.

21.1Disabling Content Item Staging
Content item staging is enabled by default and you are recommended to use it. There are, however,
some situations in which you may need to disable it. Some of the Content Engine plug-ins, for
example, have content item types for which staging must be disabled.

You can disable/enable staging in 3 different ways:

Global
To disable content item staging completely, add articleStaging=false to
ServerConfig.properties in one of your configuration layers. This sets the system
property com.escenic.article.staging to false.

Per publication
To disable content item staging for a specific publication, set the publication feature
com.escenic.article.staging to false (see Escenic Content Engine Resource
Reference, chapter 6). If staging is globally disabled, then you can enable it for a specific
publication by setting com.escenic.article.staging to true instead.

Per content type
To disable content item staging for a specific content type, add a parameter element (see
Escenic Content Engine Resource Reference, section 2.16) to the content type
definition in the content-type resource. The parameter element must have the name
com.escenic.article.staging and the value false. If staging is globally disabled, then
you can enable it for a specific content type by setting com.escenic.article.staging to
true instead.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 96

21.2Requirements
An installation where content item staging is enabled has a few additional requirements:

• Presentation hosts must use a separate solr engine from editorial hosts. This is already the
recommended configuration for production installations, but if content item staging is enabled then
it is an absolute requirement. The Content Engine provides two indexer web services for logging
updates to content items: one of them (index) logs all changes and the other (presentation-
index) excludes changes made to staged content items. One solr engine must be set up to use the
index web service in order to generate an internal index for use by Content Studio, while the other
must be set up to use presentation-index and generate an index for use by the presentation
layer. For further information, see Escenic Content Engine Server Administration Guide,
chapter 5.

• If your application includes any event listeners, you will probably need to
extend them to accept events for staged content items. A new marker interface,
neo.xredsys.api.StagedEventListener, has been added for this purpose. For detailed
instructions, see section 9.1.1.

• If your application includes any transaction filters then you will probably need to modify them.
The TransactionFilter interface has a new method called doStagedUpdate(). The abstract
class neo.xredsys.api.services.TransactionFilterService has also been updated
with a "do nothing" implementation of this method. This means that if your transaction filter is
based on TransactionFilterService, it will ignore updates to staged content items unless
you add an implementation of doStagedUpdate() to it. If your transaction filter is not based on
TransactionFilterService then failure to add a doStagedUpdate() implementation will
result in many NoSuchMethod exceptions. For further information see chapter 10.

• If your application includes any post-transaction filters, then they will probably need the same
kinds of modifications as transaction filters.

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 97

22 Further Reading

This chapter lists various resources for further reading.

22.1Escenic Resources

Reference Material

Escenic Content Engine Bean Reference

Escenic Content Engine Resource Reference

Escenic Tag Library Reference

Other Developer Guides

Escenic Content Engine Template Developer Guide

System Administration

To be supplied.

User Guides

Escenic Content Studio User Guide

22.2Other Resources
Servlets

http://java.sun.com/products/servlet/docs.html

JavaServer Pages
http://java.sun.com/products/jsp/docs.html

JavaBeans
http://java.sun.com/javase/technologies/desktop/javabeans/docs/index.html

JavaServer Pages Standard Tag Library
http://java.sun.com/products/jsp/jstl/reference/docs/index.html

JSP Expression Language
http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html

Servlet filters
http://java.sun.com/products/servlet/Filters.html

XML
XML 1.0 specification: http://www.w3.org/TR/REC-xml/
XML base tutorial: http://www.zvon.org/xxl/XMLBaseTutorial/Output/

XSL
XSL home: http://www.w3.org/Style/XSL/

http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/jsp/docs.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/index.html
http://java.sun.com/products/jsp/jstl/reference/docs/index.html
http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html
http://java.sun.com/products/servlet/Filters.html
http://www.w3.org/TR/REC-xml/
http://www.zvon.org/xxl/XMLBaseTutorial/Output/
http://www.w3.org/Style/XSL/

Escenic Content Engine Advanced Developer Guide

Copyright © 2004-2017 Escenic AS Page 98

XSLT specification: http://www.w3.org/TR/xslt
XPath specification: http://www.w3.org/TR/xpath
XSLT tutorial: http://www.zvon.org/xxl/XSLTutorial/Output/
XPath tutorial: http://www.zvon.org/xxl/XPathTutorial/General/examples.html

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XSLTutorial/Output/
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

