
Escenic Content Studio

Plug-in Guide
5.6.13.183224

Table of Contents

1 Introduction.. 4

2 Javascript Extensions.. 6

2.1 Hello World... 6

2.2 Requiring Objects... 7

2.3 Handling Events... 9

2.4 Making a Development Environment... 10

2.5 Deploying Your Extensions.. 11

2.6 A Simple Extension.. 13

2.7 Creating Browser UIs... 16

2.7.1 Writing Javascript for Side Panels.. 17

2.7.2 Deploying Browser UIs..18

3 Custom Field Editors... 19

3.1 Creating a Field Editor... 19

3.2 Registering a Custom Field Editor... 20

3.3 Using a Custom Field Editor.. 21

4 Link Header Plug-ins... 22

4.1 Using the Default Link Header Plug-in...22

4.1.1 Configuring the Default Link Header Plug-in...22

4.1.2 Enabling Your Plug-in Components.. 25

4.2 Creating Your Own Link Header Plug-in..25

4.3 Adding Link Header Options to Content Studio... 26

4.4 Using a Content Engine Proxy Service..26

5 Making a Custom Dashboard..28

5.1 Creating Dashboard Content..28

5.2 Deploying The Dashboard File...28

5.3 Configuring Content Studio.. 28

6 Java Plug-ins (deprecated)..30

6.1 Writing a Basic Plug-in...31

6.2 Making a Plug-in Task... 32

6.3 Adding User Interface Components... 33

6.3.1 Adding Custom Menu Items..33

6.3.2 Displaying Custom Dialogs... 34

6.4 Packaging and Deploying a Plug-in... 34

7 Property Editors (deprecated)... 36

7.1 Defining Custom Property Editor Mark-up... 36

7.2 Adding Mark-up to the content-type Resource...37

7.3 Implement PropertyEditorUI... 37

7.4 Implement PropertyEditorSpi..38

7.5 Package The Property Editor... 38

7.6 Example Code.. 38

7.6.1 RatingPropertyEditorUI Example...39

7.6.2 RatingPropertyEditorSpi Example... 43

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 4

1 Introduction

This manual describes the various methods you can use to customize and extend Escenic Content
Studio. Using the methods described here you can:

• Add options to Content Studio menus.

• Display notification messages.

• Create custom side panels to be displayed in the same area as the Search, Sections and
Clipboard panels.

• Create custom editors for selected content item fields.

• Use collection fields to access content published via Atom feeds.

• Create a customized dashboard or home tab (displayed in the same area as the Content Studio
editors).

• Create content-specific panes to be displayed either in the attributes panel of content editors or in
research panels.

Add opt ions
to m enus with
Javascript
extensions

Display your
own panels here
with Javascript
extensions

Add custom field
editors here

Display content -
specific HTML panes
either here...

....or here.

Add your own
dashboard here

There are basically four different recommended customization methods:

Javascript extensions
With Javascript extensions you can:

• Add options to Content Studio menus.

• Display notification messages.

• Create custom side panels to be displayed in the same area as the Search, Sections and
Clipboard panels.

For a description of how to create Javascript extensions, see chapter 2.

Custom field editors
A custom field editor replaces a standard content editor field with an HTML pane. Within the
pane you can use HTML and Javascript to:

• Display the current field value

• Display UI components for modifying the field value

For a description of how to create custom field editors, see chapter 3.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 5

Link header plug-ins
A link header plug-in lets you display an HTML page containing information related to the
currently-selected content item. A very simple example of such a page would be a preview of the
content item. The page can either be displayed in a pane of the content editor's attributes panel
or at the bottom of the Content Studio window in a research pane.

For a description of how to create link header plug-ins, see chapter 4.

Custom dashboard
Content Studio permanently displays a dashboard in the main area used for displaying editors.
The dashboard is visible whenever no editors are open but can also be displayed at any time
by clicking on its tab, in the same way as any of the editors displayed in the area. The delivered
system includes a default dashboard, but you can replace this with your own content.

For a description of how to do this, see chapter 5.

Two older, Java-based extension methods (Java plug-ins and custom property editors) are also
described in this manual. These extensions methods are now deprecated, and you should
not use them for new development work.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 6

2 Javascript Extensions

Development using the Javascript API is very straightforward. You can develop extensions locally
on your own computer and test them in Content Studio without affecting other users in any way.
Once you are satisfied with an extension, deployment is simply a matter of copying it to the correct
location on the server. Content Studio also has a Javascript console: any code you enter in this console
is executed immediately. You can use the console both as a quick means of trying out code and as a
means of examining the system state for debugging purposes.

The Content Studio Javascript environment consists of:

• The Javascript language itself

• A number of standard general-purpose Javascript libraries for purposes such as string handling,
maths, XML manipulation, regular expressions and so on

• Content Studio-specific objects that provide access to the Content Studio object model

2.1 Hello World
To get an idea of how easy it can be to extend Content Studio using the Javascript API:

1. Start Content Studio in the usual way.

2. • On Windows, select View from the menu bar while holding down the Ctrl key. An extra
Debug option should be displayed at the bottom of the View menu.

• On Macs, right click between the Content Engine address field and the publication name field
in the Content Studio footer:

Right -click here
to display Debug m enu

3. Select Debug > Javascript console. A dialog containing a Javascript console is now displayed:

4. Enter the following Javascript statement in the Javascript console:

require('notifier').notify('Hello world!');

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 7

and press Enter. A message bubble containing your "Hello world!" message should immediately
appear near the top right corner of the Content Studio window, and disappear after a few
seconds:

The require function used in this one-line "Hello World" program asks Content Studio to create an
object - in this case a notifier object that can be used to display notification messages. Usually, of
course, you would assign the object to a variable so you can use it more than once. Try entering the
following three lines in the console:

no = require('notifier');
no.notify('Hello again world!');
no.notify('Goodbye world!');

2.2 Requiring Objects
You can use the require function to get various objects from Content Studio:

notifier
You can use this object to display notification messages in Content Studio (see section 2.1).

actions
You can use this object to create your own menu items and shortcuts, which you can then add to
Content Studio menus.

content-studio
This object represents the whole Content Studio application and you can use it to:

• Open and close content editors.

• Create and display your own side panels (which appear in the same area as the Sections,
Search and Clipboard panels).

• Open external browser windows.

• Listen for various events and do something when they occur.

Using the actions object

Try this:

actions = require('actions');
myaction = actions.createAction('My Action', 'shortcut M');
actions.addAction(myaction, 'file');

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 8

Now look at the File menu. Your action should appear at the bottom of the menu:

The Action object you have created also has methods - you can, for example, enable and disable the
menu option using its enabled method:

myaction.enabled(false);

The menu entry should now be disabled. To re-enable it, enter:

myaction.enabled(true);

Using the content-studio object

You can get access to the content-studio object and use its methods in just the same way. This
code, for example, opens your default browser and displays a web page:

cs = require('content-studio');
cs.browse('http://www.vizrt.com');

Displaying side panels

You can create and display your own side panels in the same area as the built-in Sections, Search
and Clipboard panels. This is slightly more complicated. The following code, for example, creates
a browser panel in which it is possible to display user interface components defined with HTML and
Javascript.

var cs = require('content-studio');
var mypanel = 'http://example.com/studio/sidepanel/test';
var browserui;

cs.on('panel-init', function(panelcontrol) {
 if (panelcontrol.uri == mypanel) {
 browserui = panelcontrol.show('browser');
 }
});

cs.createPanel(mypanel, '&Test', 'shift F9');
browserui.uri = "/webservice-extensions/test/index.html";

In this example, cs.createPanel() creates a new panel called Test that can be identified by
the URI http://example.com/studio/sidepanel/test. The panel is represented by a
PanelControl object and when it is created, cs emits a panel-init event. This causes the function
registered with the cs.on() call to be executed. This event function checks which panel control has

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 9

been created and executes an appropriate action - in this case calling the panel control's show()
method to initialize a browser user interface component inside the panel.

You can then use this browser user interface component by setting its uri property to point to an
HTML file you have created. The content of this HTML file is then displayed in the panel.

For more information about how to create a browser UI component, see section 2.7. For information
about the on() method and event handling, see section 2.3.

Note that the URI http://example.com/studio/sidepanel/test in the above example
does not refer to any pre-existing resource - it is simply an identifier for the panel you are creating.
You can make up any identifier string you want as long as it is a syntactically valid URI.

2.3 Handling Events
Content Studio, like most GUI-based applications is event-based: once it has been started, it listens
for events such as user mouse clicks and responds to them. Your extensions need to work in the same
way, and the objects in the Javascript API provide ways of both emitting and listening for events.

To listen for and respond to events, you use an object's on method. The content-studio object, for
example, has an on method that you can use to listen for various events. Every time the user opens a
new editor or switches between editors by clicking on one of the editor tabs, an editor-active event
is emitted. The on method lets you add a listener that associates a function with this event, so that
every time an editor is activated, your function is executed. Try entering this code in the console:

no = require('notifier');
cs = require('content-studio');
cs.on('editor-active', function(editorcontrol) {no.notify('Active editor changed');});

Now try opening a new editor or clicking on a editor tab to change the active editor. The notification
message "Active editor changed" should appear in the top right corner of the window:

The editor-active event contains a parameter that the listener passes to the associated function.
This parameter, editorcontrol, is an object representing the editor that has become active. You can
access event parameters from inside listener functions. In this case you could use the editorcontrol
object's displayName property to make a more informative message:

cs.on('editor-active', function(editorcontrol) {no.notify('Opened editor ' +
 editorcontrol.displayName);});

More than one function can be associated with the same event. You have now associated two functions
with the editor-active event, so if you click on an editor tab they will both be executed and you will
see two messages displayed:

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 10

You can clear all the functions associated with an event by calling the removeAllListeners method:

cs.removeAllListeners('editor-active');

No messages will be displayed if you click on an editor tab now.

The content-studio object can also emit other events:

• editor-inactive

• panel-init

• panel-destroy

• panel-show

• panel-hide

• drop-listen

For information about these events, see the Content Studio Javascript API Reference on
documentation.vizrt.com.

Other objects that emit events (and therefore have on methods) include:

Action objects
An Action object emits an action event whenever the Content Studio user either clicks on
its menu item or presses its keyboard shortcut. The action event has no parameters. You can
therefore make a "Click me" menu item as follows:

no = require('notifier');
actions = require('actions');
myaction = actions.createAction('Click me', 'shortcut C');
myaction.on('action', function() {no.notify('I got clicked!');});
actions.addAction(myaction, 'file');

If you now click on File > Click me, you will see the notification message "I got clicked!".

EventEmitter objects
When you create a Content Studio side panel, an EventEmitter object is returned. This
object emits an action event whenever the Content Studio user clicks inside the panel. For
more information about this object, see the Content Studio Javascript API Reference on
documentation.vizrt.com.

2.4 Making a Development Environment
The Javascript console is very useful for testing code and getting instant feedback, but for development
purposes you need to be able to store your code somewhere and load your stored code into Content
Studio. To set up a development environment on your computer:

1. Create a folder for your Content Studio extensions somewhere on your computer (for example C:
\Users\your-name\cs-extensions).

2. Create one sub-folder for each extension you want to create (for example C:\Users\your-
name\cs-extensions\hello-world).

documentation.vizrt.com
documentation.vizrt.com

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 11

3. In each extension sub-folder create a Javascript file (for example C:\Users\your-name\cs-
extensions\hello-world\main.js) containing your extension code. For hello-world
this could be:

require('notifier').notify('Hello world!');

4. Add a file called package.json to each extension sub-folder. This must contain the following
JSON data:

{
 "main" : "js-file-name",
 "name": "extension-name",
 "version" : "extension-version"
}

where:

• js-file-name is the name of your extension Javascript file (for example, main.js). Note that
currently this file must contain all your extension code - it cannot load other .js files.

• extension-name is the name of your extension (for example, hello-world). The name may
contain alphanumeric characters and hyphens only.

• version is the version number of your extension. Currently this is not used for anything, but it
must be supplied.

5. Open a command prompt window.

6. Start Content Studio by entering:

javaws http://content-engine-host/studio/Studio.jnlp?com.escenic.script.root=dev-
folder

where:

• content-engine-host is the name of your Content Engine host.

• dev-folder is the absolute path of your extensions folder (C:\Users\your-name\cs-
extensions in the example given above).

7. • On Windows, select View from the menu bar while holding down the Ctrl key. An extra
Debug option should be displayed at the bottom of the View menu.

• On Macs, right click between the Content Engine address field and the publication name field
in the Content Studio footer:

Right -click here
to display Debug m enu

8. Select Debug > Developer Mode. All the extensions in your extensions folder will now be
loaded and executed. If you have included the hello-world extension described above then you
should immediately see the "Hello World!" message appear in the top right corner of the Content
Studio window.

2.5 Deploying Your Extensions
Deploying extensions is simply a matter of copying them to a fixed location on the Content Engine
host. You can, however, use an autoinstall flag in the extensions' package.json files to
determine whether or not they are automatically installed by Content Studio. This makes it possible to

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 12

start out with a limited deployment for testers and/or advanced users before making an extension fully
available. These stages are described below:

Limited deployment

Without making any changes to your package.json files, copy the contents of your local extensions
folder to the /opt/escenic/engine/studio/extensions folder on your Content Engine host
(but see note below).

The extensions are now available for use by Content Studio, but will not be automatically installed.
Testers/advanced users can install specific extensions by starting Content Studio with the following
command:

javaws http://content-engine-host/studio/Studio.jnlp?
com.escenic.studio.extension.enable=extension-list

where:

• content-engine-host is the name of your Content Engine host.

• extension-list is a comma-separated list of the extensions to load.

In a standard installation, Content Studio will look for plug-ins in the default location specified
above, /opt/escenic/engine/studio/extensions. This location is, however, configurable.
You can change it by setting the property studioExtensionRoot in configuration-root/
ServerConfig.properties in one of your configuration layers.

Full deployment

When an extension is ready for full deployment, edit its package.json file and add an
autoinstall flag. For our hello-world example the package.json file should look something
like this:

{
 "main" : "main.js",
 "name": "hello-world",
 "version" : "1.0.0.0",
 "flags": ["autoinstall"]
}

Note that the flags property is an array, so the "autoinstall" value must be enclosed in braces.

Upload the edited file to the correct location. This extension will now be automatically installed when
Content Studio is started.

Preventing auto-installation

You can prevent Content Studio from installing extensions even if the autoinstall flag is set by
starting Content Studio with the following command:

javaws http://content-engine-host/studio/Studio.jnlp?
com.escenic.studio.extension.disable=extension-list

where:

• content-engine-host is the name of your Content Engine host.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 13

• extension-list is a comma-separated list of extensions that are not to be loaded. You can prevent
installation of all extensions by specifying the special value *.

2.6 A Simple Extension
This simple extension adds bookmarking functionality to Content Studio. It adds two options,
Bookmark and Remove bookmark to the Tools menu. Clicking on Bookmark adds the current
editor to a list of bookmarks, clicking on Remove bookmark removes the current editor from the list
of bookmarks. For each bookmarked editor, a menu item is added to the Tools menu. Clicking on a
bookmark menu item opens the corresponding bookmarked editor.

Create a text file called main.js in C:\Users\your-name\cs-extensions (for example) and open
it for editing, then add the code described below.

A more complete version of this example can be downloaded from https://bitbucket.org/mogsie/
studio-extension-tutorial-bookmarks. This mercurial repository takes the form of a tutorial. If you
look at the "Commits" page (https://bitbucket.org/mogsie/studio-extension-tutorial-bookmarks/
changesets) you will see that each revision is a "lesson" consisting of:

• The code so far

• The commit message, which contains a detailed explanation of the changes made in the step

• A diff showing exactly what was changed since the previous step

The lessons are listed in reverse order, so start at the bottom.

If you install mercurial then you can download the repository, read the commit messages and try to
create your own "fork" of the extension.

The extension Javascript code

Use require to create the necessary Content Studio objects:

var notifier = require('notifier');
var actions = require('actions');
var CS = require('content-studio');

Create the Bookmark and Remove bookmark actions, and disable them - they will only be enabled
when appropriate:

var bookmarkAction = actions.createAction('Bookmark', 'shortcut D');
var unbookmarkAction = actions.createAction('Remove bookmark', 'shortcut shift D');
bookmarkAction.enabled(false);
removeBookmarkAction.enabled(false);

Create the other variables you will need - an array to hold the bookmarks, two variables to keep track
of the current editor's URI and title, and an array to keep track the number of bookmarks:

var currentURI = null;
var currentName = null;
var allBookmarks = {};

Add the actions you have created to the Tools menu:

https://bitbucket.org/mogsie/studio-extension-tutorial-bookmarks
https://bitbucket.org/mogsie/studio-extension-tutorial-bookmarks
http://mercurial.selenic.com/
https://bitbucket.org/mogsie/studio-extension-tutorial-bookmarks/changesets
https://bitbucket.org/mogsie/studio-extension-tutorial-bookmarks/changesets

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 14

actions.addAction(bookmarkAction, 'tools');
actions.addAction(removeBookmarkAction, 'tools');

The Bookmark and Remove bookmark actions should only be enabled if an editor is open. In
addition, the Bookmark action should only be enabled if the current editor is not bookmarked, and
the Remove bookmark action should only be enabled if the current editor is bookmarked. So you
need add a call to a function that will perform these checks and initialize the menu items correctly:

enableDisableActions();

Then, of course, you need to actually define this enableDisableActions function. The following
function first checks to see if an editor is actually open by checking the currentURI variable
and disabling both actions if it is null. If not, it checks whether or not the current editor is in the
allBookmarks array and enables/disables the actions accordingly.

function enableDisableActions() {
 if (currentURI == null) {
 bookmarkAction.enabled(false);
 removeBookmarkAction.enabled(false);
 return;
 }
 if (allBookmarks[currentURI]) {
 removeBookmarkAction.enabled(true);
 bookmarkAction.enabled(false);
 }
 else {
 removeBookmarkAction.enabled(false);
 bookmarkAction.enabled(true);
 }
}

Now you can add the actual bookmarking code that needs to be executed when the user clicks on one
of your menu entries. Here is the code for the Bookmark action:

bookmarkAction.on('action', function() {
 if (currentURI == null) {
 return;
 }
 if (allBookmarks[currentURI]) {
 notifier.notify('Already bookmarked...');
 return;
 }
 var uri = currentURI;
 var bookmark = actions.createAction(currentName);
 actions.addAction(bookmark, 'tools');
 bookmark.on('action', function() {
 CS.openEditor(uri);
 });
 allBookmarks[uri] = bookmark;
 enableDisableActions();
});

What is happening here? First of all currentURI is checked: if there is no current editor to bookmark,
then the function exits. Then if the current editor is already bookmarked, the function displays a
message and exits. If these checks are passed, then the function:

• Creates a new action with the name of the current editor (currentName)

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 15

• Adds this action to the Tools menu

• Defines the event code for the new action

• Adds the editor's URI to the allBookmarks array

• Calls enableDisableActions to update the state of the Bookmark and Remove Bookmark
menu items.

Here is the corresponding code for the Remove Bookmark action:

removeBookmarkAction.on('action', function() {
 if (currentURI == null) {
 return;
 }
 if (! allBookmarks[currentURI]) {
 return;
 }
 var bookmark = allBookmarks[currentURI];
 delete allBookmarks[currentURI];
 actions.removeAction(bookmark);
 enableDisableActions();
});

As you can see, it's more or less a mirror of the Bookmark action code.

Finally, you need to add some code to react to changes in the current editor. This code needs to set the
currentURI and currentName variables used in the functions described above. Here is the missing
event code:

function editorActive(editorControl) {
 console.log('Editor activated: ' + editorControl.uri);
 currentURI = editorControl.uri;
 currentName = editorControl.displayName;
 enableDisableActions();
}

function editorInactive(editorControl) {
 console.log('Editor deactivated: ' + editorControl.uri);
 currentURI = null;
 currentName = null;
 enableDisableActions();
}

CS.on('editor-active', editorActive);
CS.on('editor-inactive', editorInactive);

Save main.js.

The extension package file

In the same folder create a text file called package.json. Open it for editing and add the following
code:

{
 "main" : "main.js",
 "name": "bookmarks",
 "version" : "1"
}

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 16

Save package.json.

Testing the extension

Open a command terminal and start Content Studio by entering the following command:

javaws http://content-engine-host/studio/Studio.jnlp?com.escenic.script.root=C:\Users
\your-name\cs-extensions

Select View from the menu bar while holding down the Ctrl key, then select Debug > Developer
Mode. Your Tools menu should now contain the Bookmark and Remove bookmark options you
have defined. If you open a content item in an editor and click on the Bookmark option then a new
option with the name of the content item should be added to the Tools menu. If you close the content
item editor and click on this new option, then the content item should be reopened for editing.

2.7 Creating Browser UIs
As described in section 2.2, the content-studio object's createPanel() method
returns a PanelControl object representing a Content Studio side panel, and the
PanelControl.show('browser') method can then be used to create a BrowserModel object. A
BrowserModel object represents a browser component. It has two properties:

content
This property is a string to which you can supply HTML that you want to display in the panel.

uri
This property can be used to specify the URI of an HTML file that you want to display in the
panel.

So in order to display your own own user interface component in a side panel using the
BrowserModel's uri property, all you need to do is:

1. Create an HTML file containing the user interface component you want to display.

2. Store the HTML file in a location that will be accessible from Content Studio.

3. Write the Javascript code needed to create the panel and display your component in it.

To create a "hello world" panel, for example, you would need to make an HTML file something like
this:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello</title>
 <script type="text/javascript">
 function sayHello() {
 var script = 'require("notifier").notify("Hello world!");';
 scriptExecutor.executeScript(script);
 }
 </script>
 </head>
 <body>
 <input type="button" value="Say it" onclick="sayHello()" />
 </body>

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 17

</html>

If you save the file on your local machine as hello.html (and you have a web server running) then
you might display it in Content Studio by entering the following code into your Javascript console:

var cs = require('content-studio');
var mypanel = 'http://example.com/studio/sidepanel/hello';
var browserui;

cs.on('panel-init', function(panelcontrol) {
 if (panelcontrol.uri == mypanel) {
 browserui = panelcontrol.show('browser');
 }
});

cs.createPanel(mypanel, '&Hello', 'shift F9');
browserui.uri = "http://localhost:8080/hello.html";

The result in Content Studio looks something like this:

and clicking on the button displays a "Hello world" notification.

2.7.1 Writing Javascript for Side Panels

In order to be useful, the Javascript you write in side panel UI components needs to have access to
the same environment and built-in objects as other Javascript plug-in code. You need to be able to
require() the content-studio object, the notifier object and so on. You can do this, but you
cannot do it directly.

The sayHello() function in the previous example shows what you have to do in order to access the
full Content Studio environment:

function sayHello() {
 var script = 'require("notifier").notify("Hello world!");';
 scriptExecutor.executeScript(script);
}

From a side panel HTML file, you have access to a built-in object called scriptExecutor, which
has a method called executeScript(). Any code executed by this method has full access to
the Content Studio Javascript environment. All the Javascript code you want to execute in a side
panel HTML file must therefore be predefined as a string and then passed in as an argument to
scriptExecutor.executeScript().

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 18

Note that each call to scriptExecutor.executeScript() is executed independently and no
context is preserved between calls. So this, for example, will work:

scriptExecutor.executeScript('hw="Hello world!";require("notifier").notify(hw);');

whereas this will not:

scriptExecutor.executeScript('hw="Hello world!";');
scriptExecutor.executeScript('hw="require("notifier").notify(hw);');

2.7.2 Deploying Browser UIs

The XHMTL browser components you create must be accessible from Content Studio. For
development purposes you can always use your own computer (as long as you have a web server
running on it), as shown in the example in section 2.7. For production purposes, however, the
recommended location is http://content-engine-domain/webservice-extensions. If,
for example, you deploy your "Hello World" component to http://content-engine-domain/
webservice-extensions/hello/index.html then you can access it from your Javascript
extension code as follows:

browserui.uri = "/webservice-extensions/hello/index.html";

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 19

3 Custom Field Editors

A custom field editor is a browser pane that is displayed in place of one of the built-in content editor
field types normally displayed by Content Studio. The pane can contain any valid combination of
HTML and Javascript code, and simply renders whatever HTML is supplied in the usual way.

The pane's Javascript environment is similar to the extension Javascript environment described in
chapter 2, and provides the same general-purpose Javascript libraries. It does not, however, provide
the same Content Studio-specific objects. When writing Javascript code for a field editor, there is
only one built-in object that you can access with the require method. This object is called field-
editor, and it represents the field itself. The field-editor.value() method can be used both to
retrieve and set the value of the field.

In order to create a custom field editor you need to:

1. Create an HTML file containing the field editor definition and deploy it to some location that is
accessible from your Content Engine.

2. Register the field editor you have created in one of your Content Engine configuration layers.

3. Associate the registered field editor with one or more field definitions in your publication's
content-type resource (see section 3.3).

3.1 Creating a Field Editor
A field editor is an HTML document that displays an editable representation of the data stored in a
content item field. Javascript code is used to provide the editing functionality, and this code is able to
make use of a built-in field-editor that can:

• Retrieve data from the field.

• Retrieve a VDF model defining the structure of the data stored in the field.

• Write modified data back to the field.

• Fire an event whenever the value in the field changes.

• Display a pop-up dialog (useful for custom fields that have a large interface requiring a lot of screen
space).

The field editor must be a valid and complete HTML document. The following example defines a field
editor consisting of a slider control:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/html">
<html>
 <head>
 <script src="jquery-1.7.2.min.js"></script>
 <script type="text/javascript">
 $(window).load(function () {
 var editor = require("field-editor");
 $("#thefield").val(editor.value);
 editor.on('value-changed', function() {
 $("#thefield").val(editor.value);
 });

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 20

 $('#thefield').change(function(){
 editor.value = $(this).val();
 });
 });
 </script>
 <style>
 #viewport {margin: 0; padding: 0;}
 .spacer {padding: 10px;}
 #thefield {width: 100%;}
 </style>
 </head>
 <body id="viewport" style="height: 80px; overflow: hidden;">
 <div class="spacer">
 <input id="thefield" type="range" max="100" min="0" value="0">

 </div>
 </body>
</html>

Here is what this field editor looks like in Content Studio:

custom field editor

The important points to note here are:

• A field-editor object called editor is created in the window.load() event code.

• The editor.value property is used to retrieve the field value and initialize the slider input
element (called thefield).

• editor.value is also used in thefield.change event to write changes back to the content item
field.

• editor.on() is used to listen for value-changed events and update the slider input element.
This ensures that the editor will respond if changes are made to the field by other users.

This is obviously a very simple example, but it is possible to make much more sophisticated editors
that allow the editing of complex fields containing many different atomic values, or fields that contain
structured data stored in JSON format. The field-editor object has a model property that returns
the field's VDF model. This may be useful for creating editors that can handle a variety of different
complex field types. For a full description of the field-editor object, see the on Content Studio
Javascript API Reference.

In order to be able to use the field editor, you must then deploy it to some location on the net that is
accessible from the Content Engine. The recommended location is http://content-engine-domain/
webservice-extensions.

3.2 Registering a Custom Field Editor
Once you have deployed your field editor you must register it with the Content Engine.
To do this, create a file called configuration-root/com/escenic/resolver/

documentation.vizrt.com
documentation.vizrt.com

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 21

NamedServiceResolver.properties in one of your configuration layers (if it does not already
exist) and add a definition like this to it:

service.editor-name=editor-url

where:

• editor-name is a name that you will use to refer to the editor when configuring fields in your
content-type resource.

• editor-url is the URL of the location to which you deployed the field editor. If you deployed it to a
location in your local domain then you can omit the domain name component of the URL. If you
deployed it in some other domain, then you must specify an absolute URL including the http:
prefix.

If, for example, you deployed the field editor to the standard location in your own domain - http://
your-domain.com/webservice-extensions/slider.html - and you want to call it slider,
then you would add the following to NamedServiceResolver.properties:

service.slider=/webservice-extensions/slider.html

If for some reason you had deployed the editor to a different domain than your Content Engine, then
you would need to enter:

service.slider=http://some-other-domain/field-editors/slider.html

NamedServiceResolver.properties can contain many such entries, so you can register all your
field editors in the same file.

You are recommended to always deploy your field editors to http://content-engine-domain/
webservice-extensions. If for some reason you need to use a field editor that is deployed
elsewhere outside the local domain, then you should consider setting up a Content Engine
proxy service and access the field editor via the proxy service. This is likely to simplify firewall
configuration and ultimately be more secure. For detailed information about Content Engine proxy
services and how to create them, see Escenic Content Engine Advanced Developer Guide,
chapter 19.

3.3 Using a Custom Field Editor
To make use of custom field editor in a publication, all you need to do is associate it with the required
fields in the publication's content-type resource. You do this by including a ui:editor element as
a child of the require field elements. For example:

<field name="brightness" type="basic" mime-type="text/plain">
 <ui:label>Brightness</ui:label>
 <ui:editor type="html" name="slider"/>
</field>

The type attribute must always be set to html. The name attribute must reference one of the entries
in the NamedServiceResolver.properties file (see section 3.2).

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 22

4 Link Header Plug-ins

Content Studio can also be extended by the use of link header plug-ins. You implement a link
header plug-in by modifying the Content Engine to attach a link header to some or all of the
content items it returns. A link header is an HTTP header field that can be used to link to additional
information about the returned resource. In this case, the link must point to an HTML document,
which Content Studio will then display in an HTML pane inside the Content Studio window.

The Content Engine API for attaching link headers to content items lets you specify a template for
constructing the link header URL from strings such as the type and id of the requested content item.
In this way you can get Content Studio to display content related to the requested content item in the
HTML pane. You could, for example, in the very simplest case, define a template that caused Content
Studio to display a view of the published content item. Alternatively you could construct a URL that
accesses some public or private web service (readability analysis, for example) and display the results.

You can direct link header content to two different types of pane:

The content item's attributes panel
This is the preferred destination for link header content, since information displayed here is
obviously associated with the current content item. A new attributes panel section is created for
each link header plug-in you define.

A research panel
You can also direct link header content to a research panel should you wish. From a usability
perspective, it is less obvious that content displayed in a research panel is associated with a
specific content item.

You can create link header plug-ins in two different ways:

• Use the default link header plug-in included with the Content Engine.

• Create your own link header plug-ins from scratch

These options are described in the following sections.

4.1 Using the Default Link Header Plug-in
Using the default link header plug-in involves the following steps:

1. Create a .properties file for each required link header component in one of your configuration
layers as described in section 4.1.1.

2. Add an entry to configuration-root/com/escenic/service/
LinkHeaderManager.properties for each of your plug-in components.

4.1.1 Configuring the Default Link Header Plug-in

You can use the default link header plug-in to create as many different link header components as you
wish, you just create a separate .properties file for each component. You can call the components
whatever you like and place them anywhere in your chosen configuration layer. It is probably a good
idea to place them in your own subtree. You might, for example, create two properties files called:

http://www.w3.org/wiki/LinkHeader

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 23

configuration-root/com/myCompany/linkHeaderPlugins/
MyFirstLinkHeaderPlugin.properties
configuration-root/com/myCompany/linkHeaderPlugins/
MySecondLinkHeaderPlugin.properties

These properties files must contain the following settings:

$class=com.escenic.webservice.spi.DefaultLinkHeaderPlugin
vendor=vendor-name
version=version-number
description=description

relation=relation
mimeType=mime-type
title=plug-in-title
uriTemplate=uri-template
objectLoader=/io/api/ObjectLoader

where:

vendor-name
Should in most cases be the name (ideally the domain name) of your organisation: for example,
mycompany.com.

version-number
A version number. You can use this to keep track of changes to the plug-in configuration.

description
A description of the plug-in configuration, for information only.

relation
A name defining the relation of the content provided by the plug-in to the content displayed in
Content Studio. This property is used to determine where the content displayed by the plug-in
will be displayed as follows:

http://www.vizrt.com/types/relation/more-info
If you specify this value then the plug-in content is displayed in the attributes panel of the
content item editor to which it is related. If you define several plug-ins with this relation
then a separate section is created for each plug-in. Since attributes panel sections are
collapsible this is not a problem.

Any other value
If you specify any other value then the plug-in content is displayed in a research panel.

mime-type
The MIME type of the content that will be displayed in the browser panel, typically text/html
for HTML content.

title
The title of the content provided by the plug-in. It is used as the title of the attribute panel
section or research panel to which output is directed.

uri-template
A URI template for the resource to be displayed. For example:

{scheme}://{host}:{port}/webservice/escenic/content/{articleid}

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 24

The items enclosed in braces ({ and }) are placeholders, and are replaced at run-time by values
that depend on the content editor currently displayed in Content Studio. The URI template may
contain any of the following placeholders:

{publication}
Gets replaced by the name of the currently displayed content item's home publication.

{content-type}
Gets replaced by the name of the currently displayed content item's content type.

{source}
Gets replaced by the currently displayed content item's source property.

{sourceid}
Gets replaced by the currently displayed content item's sourceid property.

{articleid}
Gets replaced by the currently displayed content item's database ID.

{host}
Gets replaced by the host name of the web service.

{scheme}
Gets replaced by the scheme of the web service. This will normally be either http or
https

{port}
Gets replaced by the port of the web service.

You can use the placeholders in any way you like to construct URIs that will access the content
you want to display in the research panel.

Optional settings in the property file

includeContentTypes
A comma separated list of content types the plug-in will support. If the property for instance is
defined like this

includeContentTypes=news,poll

the plug-in will only add the link header if the content type is either news or poll

excludeContentTypes
A comma separated list of content types the plug-in will not support. If the property for instance
is defined like this

excludeContentTypes=news,poll

the plug-in will not add a link header if the content type is either news or poll. A link header
will be added for all other content types.

includeObjectTypes
A comma separated list of object types the plug-in will support. If the property for instance is
defined like this

includeObjectTypes=article

the plug-in will only add the link header if the object type is article. Other possible values
could be section and person.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 25

4.1.2 Enabling Your Plug-in Components

To enable the plug-in components you have defined, you must add a configuration-root/com/
escenic/service/LinkHeaderManager.properties file to the same configuration layers and
define a service property for each plug-in component as shown below:

$class=com.escenic.webservice.manager.LinkHeaderPluginManager

service.myProvider-1=/com/myCompany/linkHeaderPlugins/MyFirstLinkHeaderPlugin
service.myProvider-2=/com/myCompany/linkHeaderPlugins/MySecondLinkHeaderPlugin

Each service property must have a unique suffix after the ., but you can choose any naming
convention you like. The properties must define the locations of the plug-in configurations you created
in section 4.1.1.

4.2 Creating Your Own Link Header Plug-in
If the default link header plug-in does not meet your requirements, then you can create your own
by implementing the LinkHeaderPlugin interface. The following example shows a very basic
LinkHeaderPlugin implementation that simply adds the URL of an image (a monkey's face) to the
header of all returned sections and content items.

package com.escenic.plugins.monkeyface.core;

import com.escenic.webservice.spi.LinkHeaderPlugin;
import com.escenic.webservice.helper.ServiceLocator;
import com.escenic.domain.Link;
import neo.xredsys.api.IOObject;
import java.util.Collections;
import java.util.List;
import java.net.URI;

/**
 * A LinkHeaderPlugin that adds a linkheader referencing a picture of a monkey
 */
public class MonkeyFaceLinkHeaderPlugin implements LinkHeaderPlugin {
 public List<Link> createLinks(IOObject pContent, ServiceLocator pLocator) {
 return Collections.singletonList(new Link(URI.create("http://upload.wikimedia.org/
wikipedia/commons/6/64/Cebus_albifrons_edit.jpg"),
 "monkey",
 "image/jpeg",
 "Mr. Monkey"));
 }
}

In order to make your plug-in known to the system you must also implement the corresponding service
provider interface (LinkHeaderPluginSpi) and register it. For example:

package com.escenic.plugins.monkeyface.core;
import com.escenic.webservice.spi.LinkHeaderSpi;
import com.escenic.webservice.spi.LinkHeaderPlugin;

/**
 * The service provider interface of our monkey plugin
 */
public class MonkeyFaceLinkHeaderSpi extends LinkHeaderSpi {

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 26

 public MonkeyFaceLinkHeaderSpi() {
 super("Escenic", "1.0", "Creates a LinkHeaderPlugin");
 }

 @Override
 public LinkHeaderPlugin createLinkHeaderPlugin() {
 return new MonkeyFaceLinkHeaderPlugin();
 }
}

To register your service you must create or edit META-INF/services/
com.escenic.webservice.spi.LinkHeaderSpi and add a line naming the service:

com.escenic.plugins.monkeyface.core.MonkeyFaceLinkHeaderSpi

You then need to:

1. Compile your classes and package them together with the service declaration in a JAR file.

2. Add the JAR file to the server classpath

When this has been done, the Content Engine will see the plug in and load it using Java's
ServiceProvider API (see http://download.oracle.com/javase/6/docs/api/java/util/
ServiceLoader.html for details). The "monkey face" link header will then be included with all sections
and content items returned by the Content Engine.

4.3 Adding Link Header Options to Content Studio
In order to enable access to link header plug-ins from Content Studio, you need to add their names
to a Content Studio system property called com.escenic.studio.browserbox.linkheaders.
The best way to do this is to add a line like this to com/escenic/webstart/
StudioConfig.properties in your common configuration layer:

property.com.escenic.studio.browserbox.linkheaders=monkey

The value you specify (monkey in this case) must match the name you specified when creating your
own plug-in (see section 4.2), or the relation property you specified in a default link header plug-in
configuration (see section 4.1.1).

If you have defined/created several link header plug-ins, then you can enter all their names separated
by commas. For example:

property.com.escenic.studio.browserbox.linkheaders=monkey,readability

4.4 Using a Content Engine Proxy Service
If your link header plug-in is intended to access a public service or other resource outside the local
domain, then it is a good idea to set up a Content Engine proxy service for the target resource and
address the links it generates to the proxy service rather than directly to the target resource.

http://download.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
http://download.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 27

If, for example, your plug-in is intended to access resources at http://www.external-
service.com, you could set up a Content Engine proxy service for this URL called external-
service. You would then set up your plug-in to access resources at http://content-engine-
domain/webservice/escenic/proxy/external-service and the proxy service would forward
the requests to http://www.external-service.com. The advantages of doing this are:

• It simplifies firewall configuration, since Content Studio and other Content Engine clients can
always access the Content Engine web service. You then only need to make sure that the Content
Engine itself has access to the external resources.

• You can ensure that any sensitive information such as domain credentials are removed from
requests before they are forwarded.

• You can insert any authentication credentials that may be required by target hosts before requests
are forwarded.

For detailed information about Content Engine proxy services and how to create them, see Escenic
Content Engine Advanced Developer Guide, chapter 19.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 28

5 Making a Custom Dashboard

Content Studio permanently displays a dashboard in the main area used for displaying editors. The
dashboard is visible whenever no editors are open but can also be displayed at any time by clicking
on its tab, in the same way as any of the editors displayed in the area. The delivered system includes a
default dashboard, but you can replace this with your own content.

The dashboard is actually a browser pane, so your custom content must consist of valid HTML/
Javascript. You can use the page to display useful information about your publications: current usage
statistics from a monitoring service, for example.

All you need to do to create your own dashboard for Content Studio is:

1. Create an HTML file containing the content you want to display on the dashboard.

2. Deploy the file to a location that is accessible from Content Studio.

3. Configure Content Studio to use the deployed file as a dashboard.

5.1 Creating Dashboard Content
The file you create must be valid HTML. It can contain links to other pages and resources but
remember that in order for links to work, the link targets must be in locations that are accessible from
Content Studio. You should also bear in mind that the dashboard is intended as an information page
rather than a full-scale browser. Clicking on the dashboard's tab will always redisplay the dashboard
rather than whatever page the user may have selected by following links, so it's not a good idea to
create a page that encourages browsing - try to include all the information you want to show directly
on the page instead.

5.2 Deploying The Dashboard File
The dashboard content must be accessible from Content Studio. For development purposes you
can always use your own computer (as long as you have a web server running on it). For production
purposes, however, the recommended location is http://content-engine-domain/webservice-
extensions. You might, for example deploy your dashboard page to http://content-engine-
domain/webservice-extensions/dashboard/index.html.

5.3 Configuring Content Studio
To make Content Studio display the dashboard file you have created you need to add the following
setting to configuration-root/com/escenic/webstart/StudioConfig.properties in one of
your configuration layers:

property.com.escenic.studio.dashboard.uri=dashboard-uri

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 29

where dashboard-uri is the URI of your dashboard file. If, for example, you deployed your dashboard
page to http://content-engine-domain/webservice-extensions/dashboard/index.html,
then you would need to specify:

property.com.escenic.studio.dashboard.uri=/webservice-extensions/dashboard/index.html

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 30

6 Java Plug-ins (deprecated)

The extension method described in this chapter is deprecated and you should avoid using it for new
development.

To creating Java plug-ins you need Java programming skills and knowledge of:

• The Swing GUI component kit

• The Escenic content model

The class StudioPlugin can be used to create standard plug-ins for Content Studio. You can use
a plug-in based on StudioPlugin for a wide range of purposes. A StudioPlugin may be an
"invisible" component that runs entirely in the background, but it may also add menu items to the
Content Studio user interface and display its own user interface components (dialogs, messages
and so on). The plug-in starts up and terminates together with Content Studio. During its life, it
communicates with Content Studio via the StudioContext object.

Note that any StudioPlugins you write must adhere strictly to Swing's event dispatch thread
(EDT) conventions, as described here:http://java.sun.com/docs/books/tutorial/uiswing/
concurrency/dispatch.html

Failure to do so may cause Content Studio to become unresponsive.

The main classes involved in writing a plug-in are:

com.escenic.studio.plugins.StudioPlugin
The plug-in class itself. You create a plug-in by extending this class.

com.escenic.studio.plugins.spi.StudioPluginSpi
The SPI class that creates StudioPlugin instances. You extend this class to create an SPI class
that creates instances of your plug-in.

com.escenic.studio.StudioContext
All plug-ins communicate with Content Studio via this class. StudioPlugin has a
getContext() method that returns a StudioContext object. StudioContext has methods
the plug-in can use to subscribe to various events and to gain access to various components of
the Content Studio session.

• addLifeCycleListener(): This method adds a StudioLifeCycleListener to the
StudioContext object.

• getContentEditorContainer(): This method returns a ContentEditorContainer
object.

• getContentService(): This method returns a ContentService object.

• getUser(): This method returns a Content object containing information about the
current user.

• execute(): This method can be used to execute code encapsulated in PluginTask objects.

com.escenic.studio.StudioLifeCycleListener
This class provides plug-ins with a means of listening for and reacting to important events in
a session's life cycle such as launched, userSessionStarted, userSessionEnded and
exiting.

http://java.sun.com/docs/books/tutorial/uiswing/concurrency/dispatch.html
http://java.sun.com/docs/books/tutorial/uiswing/concurrency/dispatch.html

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 31

com.escenic.studio.editors.ContentEditorContainer
This object is a container for all the editors opened in a Content Studio session. You can use
this object to get access to all the editors in a session. It also has an addEditorListener()
method that adds an EditorListener to the ContentEditorContainer. Note that this
object is not available until Content Studio is completely initialized, so you should always access
it via the userSessionStarted event (see the example code in section 6.1).

com.escenic.studio.editors.EditorListener
This class provides plug-ins with a means of listening for and reacting to editor events such as
editorOpened and editorClosed.

com.escenic.client.content.ContentService
This object provides access to content items. It also has an addContentListener() method
that adds a ContentListener to the ContentService.

com.escenic.client.content.ContentListener
This class provides plug-ins with a means of listening for and reacting to content item events
such as contentCreated, contentCreated and contentDeleted.

com.escenic.studio.plugins.PluginTask
This class is a container for any time-consuming tasks that a plug-in performs. You must
use this class to wrap any actions that are potentially time-consuming, such as disk reads or
accessing Internet resources. You create a task by extending PluginTask and execute it using
StudioContext.execute(). For further information, see section 6.2.

For detailed information about the classes listed, see the javadoc documentation in your engine-
distribution/apidocs folder.

6.1 Writing a Basic Plug-in
Follow these steps to write a basic plug-in for Content Studio:

1. Set up the classpath

In order to write the plug-in you need studio-api.jar and client-core.jar in your
classpath. You will find these in either engine-distribution/contrib/lib or engine-
distribution/lib.

2. Create a subclass of StudioPlugin

Use the following example as a basis. You must implement an initialize() method that uses
the StudioContext object to retrieve the information it needs from Content Studio.

public class CustomStudioPlugin extends StudioPlugin {

 public CustomStudioPlugin(final StudioPluginSpi pPluginSpi, final StudioContext
 pContext) {
 super(pPluginSpi, pContext);
 }

 @Override
 public void initialize() {
 // You need to put your initialization code here.
 getContext().addLifeCycleListener(new StudioLifeCycleListener.Stub() {
 @Override
 public void userSessionStarted(final SessionEvent pEvent) {

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 32

 getContext().getContentEditorContainer().addEditorListener(new
 EditorListener.Stub() {
 @Override
 public void editorOpened(final EditorEvent pEvent) {
 // This example starts a background task when the editor is opened.
 // But you can do whatever you want.
 // You can also use other listener methods like editorClosed() etc.
 ResourceHandle handle = pEvent.getEditor().getResourceHandle();
 getContext().execute(new
 IconFetcherTask(getContext().getContentService(), handle));
 }
 });
 }
 });
 }
}

Note that getContentEditorContainer() is called inside the userSessionStarted()
method implementation. This ensures that it does not get called until Content Studio is fully
initialized and the ContentEditorContainer is available.

3. Create a subclass of StudioPluginSpi

Your subclass must override the createStudioPlugin() method and return an instance of the
StudioPlugin subclass you created in the previous step.

public class CustomStudioPluginSpi extends StudioPluginSpi {
 public CustomStudioPluginSpi() {
 super("Custom Studio Plugin", "1.0", "Escenic");
 }

 @Override
 public StudioPlugin createStudioPlugin(final String pId, final StudioContext
 pContext) {
 return new CustomStudioPlugin(this, pContext);
 }
}

6.2 Making a Plug-in Task
In order to ensure that your plug-in does not make the Content Studio user interface freeze up, you
must never directly include any code that executes potentially time-consuming operations. You must
always create plug-in tasks for such operations, in order to ensure that they are handled correctly.

You can create a plug-in task by extending the com.escenic.studio.plugins.PluginTask
class. The following example shows the outline of an IconFetcherClass that is intended to retrieve
an icon from the web or a file system and do something with it. Any code involving such a retrieval
operation should always be implemented as a plug-in task.

 private class IconFetcherTask extends PluginTask<Icon> {

 @Override
 public String getTitle() {
 return "Icon Fetcher";
 }

 @Override

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 33

 public Icon doInBackground() throws Exception {
 // In this method you can do some long running operations.
 Icon icon = fetchIconFromSomePlace();
 return icon;
 }

 @Override
 public void succeeded(Icon pIcon) {
 // Do something with the icon here
 }
 }

Once you have defined a plug-in task in this way, you can call it from your plug-in class using
StudioContext.execute():

getContext().execute(new IconFetcherTask());

For further information see the PluginTask Javadoc.

6.3 Adding User Interface Components
Currently, you can extend the Content Studio user interface using plug-ins in the following ways:

• You can add options to the Content Studio menus

• You can display your own dialogs

You cannot, however, currently use plug-ins to modify the main window of the application in any way.
(It is possible to create custom property editors for Content Studio, as described in chapter 7, but this
is not done using the StudioPlugin class.)

6.3.1 Adding Custom Menu Items

The StudioPlugin class has a getDeclaredActions() method that returns a DeclaredActions
object. This object contains all the menu items displayed by Content Studio. You can add menu items
of your own by calling its addAction() method. addAction() has two signatures:

addAction(action)
This form of addAction adds the menu item defined by the action parameter to Content
Studio's Plug-in menu.

addAction(placement,action)
This form of addAction adds the menu item defined by the action parameter to the menu
specified with the placement parameter.

The following example shows how you can add a custom menu item to Content Studio's View menu:

private void createActions() {
 Action action = new MyCustomAction(name, icon);
 getDeclaredActions().addAction(DeclaredActions.Placement.VIEW_MENU, action);
}

This method can be called from inside your plug-in's initialize() method. An Action class
contains both code to execute some action and the information needed to display a menu item.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 34

You can create your own Action classes by extending AbstractAction (see section 6.3.2 for an
example).

6.3.2 Displaying Custom Dialogs

You can display your own user interface components using the JOptionPane class. The following
example shows the definition of a custom Action class that displays an information message:

private class MyCustomAction extends AbstractAction {
 public MyCustomAction(final String name, final Icon icon) {
 // give a name and icon to your action
 }

 @Override
 public void actionPerformed(final ActionEvent e) {
 JOptionPane.showMessageDialog(null,
 "Message from studio plugin",
 "Plugin dialog",
 JOptionPane.INFORMATION_MESSAGE
);
 }
}

You can, of course display much more sophisticated user interface components using JOptionPane.
For further information about JOptionPane and about Swing in general, see:

http://java.sun.com/javase/6/docs/api/javax/swing/JOptionPane.html
http://java.sun.com/docs/books/tutorial/uiswing/components/dialog.html

6.4 Packaging and Deploying a Plug-in
To make your plug-in available to Content Studio users, you must package it correctly in a JAR file,
deploy it to the correct folder in your Content Engine installation, reassemble the Content Engine and
redeploy the studio application that serves Content Studio to users.

You must package your plug-in in accordance with the standard for Java service provider interfaces. To
do this you must create a file called com.escenic.studio.plugins.spi.StudioPluginSpi and
add a line to the file that contains the fully-qualified name of your new SPI class. For example:

com.mycompany.contentstudio.plugin.CustomStudioPluginSpi

You must then make sure that this file is included in the META-INF/services folder of the JAR file
you build, as specified in the standard for Java service provider interfaces. For further information
about this, see:

http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider

Once you have created a correctly structured JAR file, you deploy it as follows:

1. Create a folder called plugins on the server in your engine-home folder (if it doe not already
exist).

2. Create a subfolder for your plug-in (any name you choose) under engine-home/plugins.

3. Upload the JAR file to engine-home/plugins/your-plugin/studio/lib.

http://java.sun.com/javase/6/docs/api/javax/swing/JOptionPane.html
http://java.sun.com/docs/books/tutorial/uiswing/components/dialog.html
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 35

4. Use the assembly tool to assemble the Content Engine

5. Redeploy the studio application.

If you now start Content Studio, you should be able to see that your plug-in is running.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 36

7 Property Editors (deprecated)

The extension method described in this chapter is deprecated and you should avoid using it for new
development.

To creating Java plug-ins you need Java programming skills and knowledge of:

• The Swing GUI component kit

• The Escenic content model

When a Content Studio user opens a content item for editing, it is opened in a content editor: a
tab displayed in the main editing area of the Content Studio window. Content editors are specialized
for each content type: only the appropriate fields for each content type are displayed, and each field
is displayed in a specialized control suited to the field's data type. A plain text field, for example, is
displayed in a simple text field control, an HTML field is displayed in a rich text editing field, a boolean
field is displayed as a check box, an enumeration field is displayed as a combo box and so on. These
field editing controls are called property editors.

If the built-in property editors are not sufficient for your needs, you can implement more specialized
property editors as plug-ins. You might, for example, want to build an editor composed of several
inter-dependent controls to represent a complex field.

In order to make a custom property editor, you must be familiar with Swing. If you are familiar with
Swing, making a property editor is quite straightforward. It involves the following tasks:

• Define the mark-up that will be used in the content-type resource to identify the fields for which
the custom property editor is to be used.

• Add the defined markup to the required fields in the content-type resource.

• Implement a class to display the custom property editor. This class must implements the
PropertyEditorUI interface.

• Implement a PropertyEditorSpi subclass that responds to property descriptors containing
the markup values you have defined by creating an instance of your PropertyEditorUI
implementation.

• Create a JAR file containing your property editor components and a service loader definition file.

The first of the above tasks is straightforward Swing programming. For detailed information about
PropertyEditorUI, see the API Javadoc.

7.1 Defining Custom Property Editor Mark-up
You indicate that a custom editor is required for a field by adding special elements and attributes you
have defined yourself to the field definition in the content-type resource. You need to determine the
following values:

Namespace URI
Define a URI that you will use to identify the special elements you add to the content-type
resource. For example "http://my-company.com/2008/studio-plugin".

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 37

Property editor name
Define a name for your property editor. This name will also be the name of the element you add
to the content-type resource, so it must not contain any spaces or special characters other
than '-' and '_'. For example "my-custom-property-editor".

Enabled attribute name
The name of the attribute that is to be used to determine whether or not the editor is enabled.
This will usually be "enabled".

Enabled attribute value
The value that is to indicate that the editor is enabled. This will usually be "true".

Parameter names
If you want to allow parameters to be set in the content-type resource, then you should
decide on the names of the parameters. These will be XML element names so they must not
contain any spaces or special characters other than '-' and '_'. You might, for example, decide
that you need a "min" and a "max" parameter.

7.2 Adding Mark-up to the content-type Resource
Once you have decided on the mark-up to use, you can add it to the required field definitions in your
content-type resource. For example:

<field name="my-custom-field" type="number">
 <my-custom-property-editor xmlns="http://my-company.com/2008/studio-plugin"
 enabled="true">
 <min>2</min>
 <max>300</max>
 </my-custom-property-editor>
</field>

7.3 Implement PropertyEditorUI
The class that actually displays the custom property editor must implement the
com.escenic.studio.editors.PropertyEditorUI interface. The main body of this class will
be standard Swing programming and is not discussed here. In addition to ensuring that the class
implements PropertyEditorUI correctly, however, you also need to be aware of the following:

• The PropertyEditorSpi class that creates instances of this class passes two parameters to the
constructor: an AbstractPropertyBinding and a ResourceRecorder.

• The AbstractPropertyBinding object has a getPropertyDescriptor() method that gives
you access to the contents of the field definition in the content-type resource.

• The PropertyDescriptor you obtain in this way has getModule() and getModules()
methods that you can use to access any parameters specified in the field definition.

• Your class should include a dispose() method that calls the ResourceRecorder's
disposeAll() method for all the AbstractPropertyBinding's BindingListeners. For
example:

 public void dispose() {
 List<BindingListener> listeners = new
 ArrayList<BindingListener>(mBinding.getBindingListeners());
 for (BindingListener listener : listeners) {

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 38

 mBinding.removeBindingListener(listener);
 }
 mResourceRecorder.disposeAll();
 }

7.4 Implement PropertyEditorSpi
When you have a class that implements PropertyEditorUI, you must create a subclass of
com.escenic.studio.editors.spi.PropertyEditorSpi that will create instances of it. This
class's supports() method must check for the markup values you have defined for your custom
property editor, and its createPropertyEditor() must return an instance of your custom property
editor class. For example:

public class MyCustomPropertyEditorSpi extends PropertyEditorSpi {
 public static final URI PLUGIN_URI = URI.create("http://xmlns.escenic.com/2008/
studio-plugin");
 public static final String EDITOR = "my-custom-property-editor";
 public static final String ENABLED_ATTRIBUTE = "enabled";
 public static final String ENABLED_ATTRIBUTE_VALUE = "true";

 public boolean supports(final PropertyDescriptor pPropertyDescriptor) {
 return Number.class.isAssignableFrom(pPropertyDescriptor.getType()) &&
 pPropertyDescriptor.getModule(PLUGIN_URI, EDITOR, ENABLED_ATTRIBUTE,
 ENABLED_ATTRIBUTE_VALUE) != null;
 }

 public PropertyEditorUI createPropertyEditor(final AbstractPropertyBinding pBinding,
 final ResourceRecorder pResourceRecorder) {
 return new MyCustomPropertyEditorUI(pBinding, pResourceRecorder);
 }
}

7.5 Package The Property Editor
Create a JAR file containing all the components of your custom property editor.
The JAR file must also contain a service loader definition file. This file must be
located in the JAR file's META-INF/services/ folder, and must be called:
com.escenic.studio.editors.spi.PropertyEditorSpi. It must contain the name of your
PropertyEditorSpi subclass. For example:

com.mycompany.studio.plugin.MyCustomPropertyEditorSpi

You must then deploy the JAR file as described in section 6.4 and restart Content Studio in order to
test your property editor.

7.6 Example Code
The following sections contain code for an extremely simple custom property editor called rating-
editor. This editor displays a number field and prevents the user from entering values greater than
10.

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 39

This property editor can be enabled for a field by entering the following mark-up in the content-
type resource:

<field name="rating" type="number">
 <rating-editor xmlns="http://xmlns.escenic.com/2008/studio-plugin" enabled="true">
 <amount xmlns="http://xmlns.escenic.com/2008/studio-plugin">4</amount>
 </rating-editor>
</field>

7.6.1 RatingPropertyEditorUI Example
package com.escenic.studio.plugin;

import com.escenic.domain.PropertyDescriptor;
import com.escenic.module.Module;
import com.escenic.studio.binding.AbstractPropertyBinding;
import com.escenic.studio.editors.PropertyEditorUI;
import com.escenic.studio.editors.ResourceRecorder;
import com.escenic.swing.DesaturatedIcon;
import com.escenic.swing.IterableButtonGroup;
import com.escenic.swing.SwingHelper;
import com.escenic.swing.binding.BindingEvent;
import com.escenic.swing.binding.BindingListener;
import com.escenic.swing.binding.BindingState;

import com.jgoodies.forms.factories.Borders;
import org.apache.commons.lang.Validate;
import org.apache.commons.lang.math.NumberUtils;
import org.jdesktop.application.Application;
import org.jdesktop.application.ResourceMap;

import javax.swing.AbstractButton;
import javax.swing.Icon;
import javax.swing.JButton;
import javax.swing.JComponent;
import javax.swing.JPanel;
import javax.swing.JToggleButton;

import java.awt.FlowLayout;
import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;

public class RatingPropertyEditorUI implements PropertyEditorUI {

 private static final int DEFAULT_VALUE = 10;

 private final AbstractPropertyBinding mBinding;
 private final List<RatingModel> mRatingModels = new ArrayList<RatingModel>();
 private final IterableButtonGroup mButtonGroup = new IterableButtonGroup();
 private final Icon mUnselectedIcon;
 private final Icon mSelectedIcon;
 private final JPanel mRootPanel;
 private boolean mIgnoreChangeEvents;
 private final ResourceRecorder mResourceRecorder;

 public RatingPropertyEditorUI(final AbstractPropertyBinding pBinding,

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 40

 ResourceRecorder pResourceRecorder) {
 Validate.notNull(pBinding, "Binding may not be null");
 Validate.notNull(pResourceRecorder, "Resource recorder may not be null");
 mResourceRecorder = pResourceRecorder;
 mRootPanel = new JPanel();
 mBinding = pBinding;
 ResourceMap resourceMap =
 Application.getInstance().getContext().getResourceMap(getClass());
 mRootPanel.setName(getClass().getName());
 mSelectedIcon = resourceMap.getIcon("selected-icon");
 mUnselectedIcon = new DesaturatedIcon(mSelectedIcon);
 SwingHelper.initialize(this);
 }

 public PropertyDescriptor getPropertyDescriptor() {
 return mBinding.getPropertyDescriptor();
 }

 public AbstractPropertyBinding getBinding() {
 return mBinding;
 }

 public void dispose() {
 List<BindingListener> listeners = new
 ArrayList<BindingListener>(mBinding.getBindingListeners());
 for (BindingListener listener : listeners) {
 mBinding.removeBindingListener(listener);
 }
 mResourceRecorder.disposeAll();
 }

 public void initModels() {
 Module ratingEditor =
 getPropertyDescriptor().getModule(RatingPropertyEditorSpi.PLUGIN_URI,

 RatingPropertyEditorSpi.RATING_EDITOR,

 RatingPropertyEditorSpi.ENABLED_ATTRIBUTE,

 RatingPropertyEditorSpi.ENABLED_ATTRIBUTE_VALUE);
 Module amountModule = ratingEditor.getModule(RatingPropertyEditorSpi.PLUGIN_URI,
 "amount");
 int amount = NumberUtils.toInt(amountModule.getContent(), DEFAULT_VALUE);
 if (amount > DEFAULT_VALUE) {
 amount = DEFAULT_VALUE;
 }
 for (int i = 1; i < amount + 1; i++) {
 mRatingModels.add(new RatingModel(i));
 }
 }

 public void initCommands() {
 }

 public void initComponents() {
 for (RatingModel ratingModel : mRatingModels) {
 JButton button = new JButton();
 button.setBorder(Borders.EMPTY_BORDER);
 button.setContentAreaFilled(false);
 button.setFocusable(false);

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 41

 button.setOpaque(false);
 button.setIcon(mUnselectedIcon);
 button.setDisabledIcon(mUnselectedIcon);
 button.setModel(ratingModel);
 mButtonGroup.add(button);
 }
 }

 public void initListeners() {
 mBinding.addPropertyChangeListener(
 "value",
 new PropertyChangeListener() {
 public void propertyChange(final PropertyChangeEvent pEvent) {
 setValueFromBinding();
 }
 }
);
 mBinding.addPropertyChangeListener("readOnly", new PropertyChangeListener() {
 public void propertyChange(PropertyChangeEvent pEvt) {
 setComponentState();
 }
 });

 mBinding.addBindingListener(new BindingListener<Object>() {
 public void bindingUpdated(BindingEvent<Object> pEvent) {
 setComponentState();
 }
 });
 mButtonGroup.addPropertyChangeListener(IterableButtonGroup.SELECTED_PROPERTY,
 new PropertyChangeListener() {
 public void propertyChange(PropertyChangeEvent pEvent) {
 if (!mIgnoreChangeEvents) {
 updateBindingValue((RatingModel) pEvent.getNewValue());
 }
 }
 });
 }

 public void initLayout() {
 mRootPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
 for (AbstractButton button : mButtonGroup) {
 mRootPanel.add(button);
 }
 }

 public void initState() {
 setValueFromBinding();
 setComponentState();
 }

 public JComponent getRootComponent() {
 return mRootPanel;
 }

 private void updateBindingValue(final RatingModel pValue) {
 mIgnoreChangeEvents = true;
 mButtonGroup.setSelected(pValue, true);
 mBinding.setValue(pValue == null ? null : new BigDecimal(pValue.getValue()));
 updateSelectedIcon(pValue);
 mIgnoreChangeEvents = false;

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 42

 }

 private void setValueFromBinding() {
 if (!mIgnoreChangeEvents) {
 BigDecimal value = (BigDecimal) mBinding.getValue();
 if (value != null) {
 for (RatingModel ratingModel : mRatingModels) {
 if (ratingModel.getValue() == value.intValueExact()) {
 mButtonGroup.setSelected(ratingModel, true);
 updateSelectedIcon(ratingModel);
 break;
 }
 }
 }
 else {
 updateSelectedIcon(null);
 }
 }
 }

 private void updateSelectedIcon(final RatingModel pRatingModel) {
 long value = pRatingModel == null ? -1 : pRatingModel.getValue();
 for (int i = 0; i < mButtonGroup.getButtonCount(); i++) {
 Icon icon = mUnselectedIcon;
 AbstractButton button = mButtonGroup.get(i);
 if (i <= value - 1) {
 icon = mSelectedIcon;
 }
 button.setIcon(icon);
 }
 }

 private void setComponentState() {
 if (mBinding.getState() == BindingState.UNBOUND) {
 for (AbstractButton button : mButtonGroup) {
 button.setEnabled(false);
 button.setSelected(false);
 }
 }
 for (AbstractButton button : mButtonGroup) {
 button.setEnabled(!mBinding.isReadOnly());
 }
 }

 private class RatingModel extends JToggleButton.ToggleButtonModel {
 private final int mValue;

 public RatingModel(final int pValue) {
 mValue = pValue;
 setRollover(false);
 }

 public int getValue() {
 return mValue;
 }
 }
}

Escenic Content Studio Plug-in Guide

Copyright © 2009-2017 Escenic AS Page 43

7.6.2 RatingPropertyEditorSpi Example
package com.escenic.studio.plugin;

import com.escenic.domain.PropertyDescriptor;
import com.escenic.studio.binding.AbstractPropertyBinding;
import com.escenic.studio.editors.PropertyEditorUI;
import com.escenic.studio.editors.ResourceRecorder;
import com.escenic.studio.editors.spi.PropertyEditorSpi;

import java.net.URI;

public class RatingPropertyEditorSpi extends PropertyEditorSpi {
 public static final URI PLUGIN_URI = URI.create("http://xmlns.escenic.com/2008/
studio-plugin");
 public static final String RATING_EDITOR = "rating-editor";
 public static final String ENABLED_ATTRIBUTE = "enabled";
 public static final String ENABLED_ATTRIBUTE_VALUE = "true";

 public boolean supports(final PropertyDescriptor pPropertyDescriptor) {
 return Number.class.isAssignableFrom(pPropertyDescriptor.getType()) &&
 pPropertyDescriptor.getModule(PLUGIN_URI,
 RATING_EDITOR,
 ENABLED_ATTRIBUTE,
 ENABLED_ATTRIBUTE_VALUE) != null;
 }

 public PropertyEditorUI createPropertyEditor(final AbstractPropertyBinding
 pBinding,
 final ResourceRecorder
 pResourceRecorder) {
 return new RatingPropertyEditorUI(pBinding, pResourceRecorder);
 }
}

