\V|zrt\

Escenic Content Engine
Server Administration Guide

5.2.7.2

Escenic Content Engine™

\VIzrt\

D 2010 Vizet Ltd. A1l rights resaread.

\VIZI't\

Copyright © 2003-2011 Vizrt. All rights reserved.

No part of this software, documentation or publication may be reproduced, transcribed,
stored in a retrieval system, translated into any language, computer language, or
transmitted in any form or by any means, electronically, mechanically, magnetically,
optically, chemically, photocopied, manually, or otherwise, without prior written
permission from Vizrt.

Vizrt specifically retains title to all Vizrt software. This software is supplied under a license
agreement and may only be installed, used or copied in accordance to that agreement.

Disclaimer

Vizrt provides this publication “as is” without warranty of any kind, either expressed or
implied.

This publication may contain technical inaccuracies or typographical errors. While every
precaution has been taken in the preparation of this document to ensure that it contains
accurate and up-to-date information, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained in this document.

Vizrt’s policy is one of continual development, so the content of this document is
periodically subject to be modified without notice. These changes will be incorporated
in new editions of the publication. Vizrt may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

Vizrt may have patents or pending patent applications covering subject matters in
this document. The furnishing of this document does not give you any license to these
patents.

Technical Support

For technical support and the latest news of upgrades, documentation, and related
products, visit the Vizrt web site at www.vizrt.com.

Last Updated

21.12.2011

http://www.vizrt.com

\VIZI't\

Table of Contents

I 1 1o o Yo 0 o o o 9
2 The escenic-admin Web Application........civecvveimiesinicsiss i snnesssne s snan s 11
720 R o) 1 = 11
2 e A - 1 12

2.1.2 Configuration Layer Report.......cciccvvicermnnsmissmnnsnssssnnssnnnsnnnns 12

2.1.3 Performance SUMMAry....iccuuvesrusnssssnsssansssnnsasnssasnssusnssnnnsnnnnsas 13

2 [T 16

2.1.5 Log ON t0 ESCENIC. uueuiiumrrinmrninnsunnssunssiansnnnnsannssunnssnnnsannnsannnss 16

2.1.6 View the Browser LOg. ..cciuerruammsinsmissssssmsnssusnssinnssnnnsannssnnns 16

2.1.7 View JSP Statistics.....vveriiiiiiiimiiiiniss s v s s s snnn e 16

2.1.8 View Installed PluginS......iccvuiermmsminsmnssssnsssnnsssnnsasnssnnnssnnnsas 17

2.1.9 VieW SeSSIONS...uiiumrrienruinsrusnssuanssusssasnssusnssusnssssnssssnsasnnsunnnsnns 17

2.1.10 Create a New Publication........covveiiiieiincininsinnesinnes s snansnnes 17

2.1.11 Export a Publication........ciccrviminieniesnis i ssn s ssnnnsnnnnsuns 17

2.1.12 Issue a Support Request.......uvieceimniinssnnssnssnnsnnsinnsnnssnnnnnns 18

2.1.13 Component BroOWSer....cciuiiemsrmuinssmsssnnssmssnnssssssnnssnssnnnsnnnnnnes 18

2.1.14 Database BroOWSEer.....iceruvsrianssiansmiassssnssssnssusnsssnnsannnsannssnnnnss 20

2.1.15 System Properties.......cccverviriinismiessnie s ssn s snnsnnnnsnnns 21

2.1.16 View The Logging LevelsS......iccivvermiemmismmsnsssnsssnssnsnssnnnsnnnns 21

2.1.17 Remove Some Objects From Cache.........cccvviimnvimrninrnnnsnnnens 23

2.1.18 Clear All Caches.....ccivimriiriieriis i i s snrs s snr s s sannns 23

2.1.19 Lost User Wizard.....ccoveervvmmmnsrmsssmnssssssnssssnssnnnssnnnsannssnnns 23

2.2 List PUDS...cuiiiiiie i irrs s rnr s v 23
2.2.1 Update RESOUICES . ucuiiumrriamrrrnnssrnssannssnnnsssnnsasnnsasnssannssnnnsnnnnsnsn 24

2.3 NeW PUDS...ciiiiiimirnr s rnssn s ar s snr s saa s sna s sar s san s saa s sann s annnsnnnnsnnnnss 25

2.4 Upload RESOUICES.tuumtuuemruunssuansasassasnssussssusssasnssasnssusnsssnnsasnnsasnssnnnsnns 26

3 The indexer-webapp Web Application........civveirviiiniisiniesiniesinnsssnss i nnansuns 29
3.1 Configuration......ccuvieiierrirnre s smas s rr s ar s sar s ra s rr s 29

3.2 Current State.......ccciiiiiiiiiiiiir s s 30

3.3 Current StatistiCs.....uiciriiriieirnii i rrr s s 30

3.4 Indexer ACtiONS.....iccuvieeruisrurnssinnr s srr s rua s sra s s sar s saa s aas 30

4 Configuring The Content ENGIiNe.....cciviriinrmimmmissmis s i ssnassannssnnnssnnnsnnns 33
4.1 Configuration LayerS....ccvversiemruissusnssusssasssasnssssnssssnsasnnsasnssunnssnnnsnns 33

4.2 Configuration File Format........cuuiiiiiinsennssnssssnsssassssnssssssnsssansnnnnnnnns 34

4.3 Managing The Configuration LayersS.....cccuueasursssssssssnssssnsassssnnssnnnnsnns 37

4.3.1 Create The Common Configuration Layer.........cvecciiiinnnnnanss 38

4.3.2 Add A Host Configuration Layer........ccccvuimmrrniassnsanssssnannnss 38

4.3.3 Add A Family Configuration Layer.........cccovvvemrinnnesnnnannnsnnnes 39

4.3.4 Add Further LayersS......cccuuieiminnnmmsinnnssssssnssssssnnsssssnnnssnnnnnnss 39

4.3.5 Change The Location of a Layer........ciecciiinirniiansssassnnnnnss 40

5 Search Engine Configuration........c.uuieiiiisrsninsssssssssnnsssssnnssssnannnsnnnnns 41
5.1 The Standard Configurations.........cvecciiiiernsssssssansssnanssssnnnssnnnns 41

5.2 Modifying The Standard Configuration...........civveciiiiiincsiininensisnnannnns 43
5.2.1 Customizing the Index Schema...........civiieiiiiiiecsirnines s ssnnnnnas 43

5.2.2 Isolating The Search ENQiN@....ccccuviiemmmrsiinnmrsssannnssssnnnssssannnsnns 43

L O - T o] 11 5 T« T 47
6.1 Flushing Caches....ciccciiiiieiiniiinin s sssia s ssssa s sssans s snanan s sanannnsnnnnnes a7

6.2 Tuning The Object Caches......ccccciiiiiiiiiiiesinsse s rsra s asa s asran s sannns 47
6.2.1 Global Caches.......cicciiiiiiriiiaersia s sss s sssa s saann s snnnnnnsnnnns 49

6.2.2 Web Application Caches......cccviiiiiniirmisssssssnssssnssnnnanns 53

6.3 Distributed Caching........civiiciiiieiiiniii i innse s ssssa s sssa s ssssn s sanannnsnns 54
6.3.1 With RMI Hub......cciiiiiiiinisinn s s snn s s s snnm s snnnnnnnns 55

6.3.2 MeSh Set-UpP...cccriiiemmimiiarmiasssiansssssanssssasannssanannnssnsnnnssnnnns 58

7 A = 1o Yo X] o =]]« 1 L 61
7.1 InitialBootstrapper....iiccciiiierniirsia s sssa s ssssan s sasan s sannnn s sannnnnsnns 61

8 Throttling.....uvuieiiiinnii s ssia s snr s saasa s saaan s aaaan s s sanan s saannnnssannnnnsnnnnnnss 65
8.1 ResourceThrottle.......ccciiiiiriissninan s sssa s ssssan s snsnan s sannnnnsnnnnnnssnns 66

8.2 Per-Publication Throttling........vuieciiiiiiiiiniinssirssss s sssise s snsn s snnnnnnsas 67

T =Y 01 0 1 1= Lol = e 69
9.1 Scalability....cccviiiiriin s riss s srria e rrr s ra 70

9.2 Web Server Set-Up.....ccciviieirmisrssianssrssassssssannsssssnnsssssannssnsnannssnnas 70
9.2.1 Web Server TUNING...ciieeisssemmssssnsssssanssssssnnssssssnnsssssnnnssnnnnnss 70

9.2.2 Why You Need a Web Server........cciivieiminnmsisssssnnssnnnnnss 71

9.3 Database PerformancCe.......ccivuieemiriinrsisansssssanssssssansssssannnssssnnnssnnnns 72
9.3.1 Identifying Slow Transactions........ccccriirminnsrssnssniannssnnas 72

9.3.2 Troubleshooting Slow Transactions.........cccivvierninnsrnninnnesnnas 73

9.3.3 Getting the Database to Scale........ccivviciiiiiicsirnnncs s innnn s nnnaes 74

9.3.4 PercONa SeIVer.iiicciiiiuemsisssnnnsssssnnsssssanssssssnnsssssannssssnnnnssnnnnnns 74

9.4 The TCP/IP StacK....iicctvieriirianmmianmsimsssssssnsssansssansssnnsssnsssnnsssnnsnnnns 75
9.4.1 Caching SerVerS....ccccitiimrisssnnssssannsssssnnnssssannssassansssasnnnnsnnnnns 75

9.5 Searching With SoOlr....c..cieeiiiieisssnssssssnsssssssssnssssssanssssnnsssnnsannnnnnnnn 76

9.6 Avoiding Single Points of Failure........ccovriivirsnssnnsssnssssnssnsnssnnnssnnnnnnns 76

9.7 Optimizing the Operating System Kernel........ccccciiiiieiiiniincsssnnnanannas 77

9.8 Highly Interactive Sites........iiiiiiiiiiiiiiiiiiissirnise s irsia s snsn s snn s snnnans 77
9.8.1 Session BiNdiNg....icieceisiiemsmsiannsrmmsnnsssssnnsssssnsssssannsssnsnnnssnns 78

9.8.2 Edge Side INcludes.....cccciiiinmmmmminnnmmssnnnssssnannnssssnnssssnnnnssnnnnnss 78

1 I T T 1 0 L 78

9.8.4 User Registration.......cccccciviiiininmmnsssssinsssssannnssssannssnnnns 80

9.9 HOW tO TeSt....ccuiiiuemmriinmmnrnnnnsssinnssnssnssssasannssnsnnnsssannnnnsnnnnnnssnnnnnnss 80
9.9.1 Smoke TeSting....iceccrruiiemsrsmsnnmmssssnnsssssnnssssannsssssnnnssnnannnsnnnnns 80

9.9.2 Functional testing.......ccuviiiimiiesirnisessssia s ssase s ssia s snnannnnnns 81

9.9.3 Load testing....ccccuuuimmrrmnnmmssinnnssssansnssssnnnsssssnnsssssannssnnnnnnssnns 81

0 B = - T o] T« e 83
10.1 Database Server.....icccciuiierrmiassssansssssanssssssannsssssnnsssasnnnssssnnnnssnns 83
10.2 LDAP S @IVl ..cuiiusaeesssuannssassnnssssssnssssssnnssisssnsssssssnssssssnnsssssannssssnnnns 83
10.3 File System.....iiiiiiiiieiminsssans s sassns s sasannssaasansssasnnnssnnnnnnssnnnnnnnns 83
10.3.1 Data FileS...iiicccuiiiiemmrninnssinnnssssnnnnssssnnnssassnnnssasannnsnsnnnnssnnns 84

10.3.2 Content Engine Configuration Files........cccccuiiirnninrnnannns 84

10.3.3 Publication Web Applications.........cciviecciinincssinnincsssnsnannnsnas 84

10.3.4 A Simple Backup Script.....ccccciuiiiairminssiiasssssnssssssnnnssnnans 84

I O T T T o 1 T« 87
11.1 Editing trace.properties......ccviieiiiiiiniiisiinssirsiae s rsnaanannn s 87
11.2 Log File Rotation.......cccccuiiiummmiiemsssnssssnsnn s ssssns s ssnnnnnsnnnnnnssnnnnnnss 87
11.3 Logging Level....cccuuiiiiiissinsssnans s sssssnsssansnnsssanannssannnnnssnnannnnsnns 88
11.4 Example Logging Set-Up....cccuruiarmiianmrmmsassssssnnsssssanssssssnnnssssannssnns 88
11.5 Changing the Name of trace.properties.........cccciviierniinirnisnnnsnnnass 89

11.6 Content Studio Thread DUMPS...cccciiiiemmmrmisnnsssssnnsssssnnsssssannssnsnnnnss 89

72 1 e T e o e 91
13 System Properties.....ciuieciiiirssiinrssnssssa s ssssan s sasan s sannan s sannnnnsnnnnnnss 93
14 Content Studio Setup......cccciiiieiiiiiiir i s srsia s rsa s rarr s rarraaa s 95
14.1 Language and Country Settings.......cccciiiimninmmnsnsnsnssnssnnannnsnns 95

14.2 Spelling DictioNaries.....iuiecrsiissiansssssnsssssnnsssssansssassnnsssnnnnnnsnns 96
14.2.1 Dictionary SOUICES.....iuuiemmrruinnnsrsssnnnsssssnnsssssnnnsssssnnsssnsnnnssnns 97

14.3 Memory SettingsS....cccvuriiircissnsieensssnssnssssssssnsnssssnssnsssnnnsnnnnssnnnnnnnns 98

\VIZI't\

Escenic Content Engine Server Administration Guide

1 Introduction

This Server Administration Guide is intended to be read by the system
administrator responsible for managing the server or servers on which an
Escenic Content Engine and its supporting SW components are installed. It
covers the periodic administration tasks a system administrator needs to carry
out once the Content Engine is installed and in operation. It does not describe
how to install and deploy the Content Engine: for installation and deployment
instructions, see the Escenic Content Engine Installation Guide.

Both this manual and the Escenic Content Engine Installation Guide make
the following assumptions about the Escenic installation and you, the reader:

* The Content Engine and the supporting software stack (database, web
server, application server and so on) are installed one one or more UNIX or
Linux servers, not on Windows.

* You are a suitably qualified system administrator with a working knowledge
of both the operating system on which the Content Engine is installed and
of the components in the supporting software stack.

All shell command examples given in the manual are tested on Debian Linux
servers: they may need minor modifications to be used on other Linux or
UNIX platforms, and it is assumed that you are able to make the necessary
"conversions" to your own platform. Some of the commands should be
executed as the owner of the Escenic installation. This is signalled by use of
the $ command prompt. For example:

$ 1s

Other commands must be executed as root. This is signalled by the use of the
command prompt:

/etc/init.d/slapd restart
Two different kinds of installation are discussed in this manual:

* Single server installations, in which the Content Engine and the entire
supporting SW stack are installed on a single machine.

* Multi-server installations. There are many possible multi-server
configurations, but only one is described here. It is assumed that you are
competent to extrapolate from the description of this configuration to your
particular variant.

All file paths and URLs shown in the manual are based on the following
standard folder structure:

Standard location Component
/opt/escenic Escenic
/opt/escenic/engine Escenic Content Engine

/opt/escenic/assemblytool Escenic assembly tool

Copyright © 2003-2011 Vizrt Page 9

Escenic Content Engine Server Administration Guide

Standard location Component

/etc/escenic Escenic configuration
/etc/escenic/engine Escenic Content Engine configuration
/opt/java/jdk Java

/opt/java/ant Ant

/opt/tomcat Tomcat

If your system is organized differently, then adjust the paths you use
accordingly.

Page 10 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

2 The escenic-admin Web Application

An administration web application called escenic-admin is included with the
Escenic Content Engine. It provides access to various administration-related
tools. This chapter contains a full description of escenic-admin and how

to use it. It describes how you can use the application to carry out various
tasks, but does not in general discuss the purpose of the tasks: this is covered
either in the later chapters of this manual or in the Escenic Content Engine
Installation Guide.

When the Content Engine is running, you can access escenic-admin by
starting a browser and pointing it at:

http://your-server:8080/escenic-admin/

where your-server is the domain name or IP address of the server on which the
Content Engine is running.

This should display the following page:

Menu

Home Welcome to Escenic Content Engine.
List pubs
New pubs Status
Check the status of this server and its configuration. Use this page to verify that the server is set up correctly. The Status
page will perform simple checks toward the Database and LDAP components to verify that the configured values actually
work,
Configuration Layer Report
Check the critical properties in the configuration layers of this server. Use this to see if you have problems initially setting
up the server. Normally, these properties don't change after an initial installation.
Performance Summary
Display a performance summary of this server. This will show a summary of all of Escenic's caches, along with the
current request times, statistics for database access, and memory information.
Top
Show the most active ISP files that are currently active. This will provide a dynamic real-time view of a running system.
It shows the amount of time spent in different resources in the last two second interval.
Log on to Escenic
To log on you need a valid user ID and password with access to a specific publication. After logging on, you may create
web content, desk items, etc.
View the browser log
The browser log displays errors generated by the templates. You can add your own log messages in templates. The ECE
tag libraries also output their messages into this log. Please use the 'View the logging levels' to adjust the log levels.
View JSP Statistics
The JSP statistics can show the hot-spots of your JSP templates. The statistics include time and database resources spent
in each of your JSP templates. It is also possible to get a raw CSV of the data for further processing.
View installed plugins

Any plugins that have been installed successfully will be shown on this page.
Viaw sascinnes

The menu on the left switches the display between three main pages, ,
and . These pages are described in the following
sections.

2.1 Home

This page contains a long list of links that provide access to various system
administration tools and services, described in the following sections.

Copyright © 2003-2011 Vizrt Page 11

2.1.1

2.1.2

Page 12

Escenic Content Engine Server Administration Guide

Status

This option displays the Content Engine status page, which looks something
like this:

Menu [
Home System Security Configuration Network
HZEN':’;EES Properties settings Ea==path Layers Databa=s LY Parameters All tests

System Properties

Some features in Escenic are controlled by a few important System Properties. These properties must be set correctly in order for the rest of Escenic to
function correctly. Some are mandatory, while some are optional. A yellow result indicates an optional property that has not been set. A red result indicates
a mandatory property that has not been set or has an improper value.

Systemn properties are set in different ways depending on your application server, Some application servers allow you to pass parameters to the java

executable that runs the application server, In this case use the -D parameter to pass System Properties on the command line. For example; to set the
Systemn property property to the value value, you should add -Dproperty=value,

com.escenic.config /home/corenightlyosl/localconfig Help

escenic.server dev-test8 Help

This page displays the results of various sanity checks performed to determine
the status of the Content Engine and is a useful diagnostics tool, particularly
during the initial installation and configuration phase. The test results are
grouped into seven different categories (,

)) and
), displayed in a menu across the top of the screen.

’ ’

The result of each of the tests displayed on these pages is indicated by one of
the following icons:

The test was passed, no action needed.

The test was not passed but the failure is not critical. Click on the
link for information about the consequences of the failure and how to fix
the problem (if necessary).

%

The test was not passed and the failure is critical (that is, the Content
Engine will not function properly until the problem is fixed). Click on the

link for information about the consequences of the failure and how
to fix the problem.

For each test there is a link on the right hand side of the window
that displays information about the test: what the test does, what the
consequences of failure are and advice on fixing failures.

Configuration Layer Report

This option displays a page that shows the settings of the Content Engine's
mandatory configuration parameters. In the same way as the >
page, it indicates whether each parameter is correctly set and provides
links with background information about each setting.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

The Content Engine has many more configuration parameters than the
ones shown here: to see the settings of other parameters, use the >
option (see section 2.1.13).

The Content Engine has a layered configuration system that allows more
specific configuration parameter settings (for example, host-specific settings)
to override more generic (for example, installation-wide) ones. It is therefore
not always immediately obvious where a particular parameter setting
originates from, or where the best place to modify it is. To be a successful
Escenic server administrator you need to understand this configuration
system. It is described in chapter 4.

2.1.3 Performance Summary

This option displays a page of Content Engine performance data.

At the top of the page are controls for determining how the page is refreshed:

This button refreshes the page now. It can be used at any time, but will
normally only be used when the option is disabled.

Check this option if you want the page to be automatically refreshed
every 2.5 seconds. If this option is not checked them the page is only
refreshed on request.

The contents of the page is divided into separate
sections for each of the applications running on the application server: one
section (called) for the Content Engine itself, and one for each related
application (including publication applications). The section contains

, and information. The other
sections usually only contain information.

2.1.3.1 Cache Summaries

A cache summary has the following columns:

Component Name
The name of the component that manages the cache. The name is also
a link to the component's component browser page, where you can
tweak the cache settings. For information about the component browser,
see section 2.1.13. For advice on cache tuning, see chapter 6. Note
that any changes you make to cache settings using the component
browser are temporary and will be lost the next time the Content Engine
is restarted. To make permanent changes to a cache's settings you must

edit a .properties file in one of your configuration layers (see chapter
4).

Size
The maximum number of entries allowed in the cache.

Copyright © 2003-2011 Vizrt Page 13

Page 14

Escenic Content Engine Server Administration Guide

Adds
The number of entries added to the cache since the last restart.

Hits
The number of hits (successful cache look-ups) since the last restart.

Misses
The number of misses (unsuccessful cache look-ups) since the last
restart.

Idle
The average time taken for an idle object to pass through the cache, in
milliseconds.

Cache Health
A general indicator of how well the cache is performing. The vertical bar
shows what proportion of the items in the cache are popular (popular
items are ones which keep being requested and therefore stay in
the cache for a long time). The green area in the center of the graph
indicates the "healthy" area, and the vertical bar should mostly appear
within this area. If the indicator is to the left of the green area, then
almost all of the objects in the cache are popular. This suggests that the
cache may be too small, and there are even more popular objects that
cannot be kept in the cache because it keeps filling up. If the indicator is
to the right of the green area, then very few of the objects in the cache
are popular, suggesting that the cache is larger than it needs to be.

Note that you should not make changes to a cache's size based on

a single reading of this indicator. You need to observe the indicator
over time, and only make an adjustment if the indicator is consistently
outside the healthy area.

LRU Distribution

This graph shows the distribution of items in the cache the last time
the cache was full and needed emptying. Each bar represents a level of
popularity, so the first bar indicates how many items were very popular
(frequently requested), and the last bar shows how many objects were
very unpopular. A well-functioning cache should have most items at the
left hand (popular) end. If the distribution seems to be completely even
it may mean that the cache is too small or too large. Consult

for further guidance, to see whether or not the cache is
retaining items for a sensible amount of time, and to make sure
that items are not moving through the cache too fast.

Popularity Distribution
This graph shows the relative popularity of the items in the cache the
last time the cache was full and needed emptying. Popular (recently
requested) items are shown at the left hand end, unpopular ones at the
right hand end. A well-functioning cache should have most items at the
left hand (popular) end.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

Live hit rate
This shows the percentage hit rate of the cache since the last time the
page was updated. In other words, if
is switched on, it shows the hit rate over the preceding 2.5
seconds. If is switched off then when you click , it
shows the hit rate since the previous time you clicked

2.1.3.2 Load Averages

The load averages table shows information about the load on various parts of
the Content Engine. The table contains the following columns:

Component Name
The name of the component that monitors this part of the Content
Engine. The name is also a link to the component's component browser
page, where you may possibly find more detailed information than is
displayed in the load averages table.

Success

The number of successful requests handled by this part of the Content
Engine since the last restart.

Failures
The number of failed requests handled by this part of the Content Engine
since the last restart.

Time
The amount of time spent in this part of the Content Engine since the
last restart.

Load average
A graph showing the average load exerted on this part of the Content

Engine over the last minute or so (assuming is switched
on - otherwise the length of time represented by the graph will depend
on how frequently you have clicked on the button).

Description
The part of the Content Engine monitored by this component.

2.1.3.3 Activity Monitors

The activity monitors table shows information about the throttles used to
limit the load on various parts of the Content Engine. The table contains the
following columns:

Component Name
The name of the component that controls this throttle. The name is
also a link to the component's component browser page, where you
can adjust the throttle settings if necessary. For information about the
component browser, see section 2.1.13. For advice on throttle tuning,
see chapter 8. Note that any changes you make to throttle settings
using the component browser are temporary and will be lost the next
time the Content Engine is restarted. To make permanent changes to

Copyright © 2003-2011 Vizrt Page 15

2.1.4

2.1.5

2.1.6

2.1.7

Page 16

Escenic Content Engine Server Administration Guide

a throttle's settings you must edit a .properties file in one of your
configuration layers (see chapter 4).

Current usage
The number of requests currently being handled by this part of the
Content Engine.

Limit
The maximum number of concurrent requests allowed by the this
throttle.

Description
The part of the Content Engine controlled by this throttle.

Top

This option displays a constantly updated list of the most active JSP templates.
The list shows the amount of time spent in each listed JSP file during the
preceding two seconds. It can be a useful tool for identifying bottlenecks in
your JSP code.

Log on to Escenic

This option displays a log-in page for Escenic Web Studio, the Escenic
publication administration application. Web Studio is a web application that
allows you to carry out publication-specific tasks such as creating, deleting
and re-organizing sections, setting section parameters, importing content
and so on. It is described in the Escenic Content Engine Publication
Administrator Guide.

View the Browser Log

This option displays the messages generated by Escenic templates. The
messages displayed can come from two possible sources:

* Escenic tag library tags

* Template code. Template developers can explicitly include log messages in
their templates using the util:logMessage tag.

Log messages are classified into various error level categories (ERROR,
WARNING and so on). You can select which of these levels are to be displayed
here using the option (see section 2.1.16).

View JSP Statistics

This option displays JSP-related performance statistics, and is mostly likely
to be used by template developers rather than by system administrators.
Statistics are only displayed if statistics gathering (or profiling) has been
enabled in publication templates. For information about statistics collection
and interpretation, see Escenic Content Engine Advanced Developer
Guide, chapter 4.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

2.1.8

2.1.9

2.1.10

2.1.11

View Installed Plugins

This option displays a list showing the status of all the plug-ins currently
installed with the Content Engine. Here is an example of a plug-in status
listing, in this case for the menu editor plug-in:

menuEditor The Escenic The Menu editor is a Browser based GUI
@@VERSION@@ Content Engine used to edit "menu.xml" files in the
MenuEditar publication.
Type Target Task Area Roles Label LabelKey Uri
Meru /plugin
internal-link escenic /main-menu plugins [...] - null /menuEditor
aditor -
/editMenu.do

The green check mark indicates that the plug-in is correctly installed. Badly
installed plug-ins are marked with a £ icon instead.

View Sessions

This option displays the form. You can use it to display information
about user sessions.

Create a New Publication

This option (Like the options in the main menu) displays forms for
creating new publications and for uploading the resources required to create
them. See section 2.3 for further information.

Export a Publication

This option displays the form. You can use this form
to export an entire publication or selected parts of a publication to Escenic
syndication format files. To export content from a publication, enter your
requirements in the form and click on

Use the controls in the form as follows:
Enter the ID of the publication from which you want to export content.

Enter a comma-separated list of the sections from which you want
to export content. If you leave this field empty, then content will be
exported from all sections.

The path of the folder to which the exported files will be written. You can
specify either an absolute or a relative path. Relative paths are relative
to the java.io.tmpdir system property.

Check this option if you want different object types (e.g., content items,
sections, section pages) to be written to separate output files. Section

Copyright © 2003-2011 Vizrt Page 17

2.1.12

2.1.13

Page 18

Escenic Content Engine Server Administration Guide

pages, inboxes and lists are all based on the same internal object type,
and will therefore be written to the same file.

If you don't want to generate very large syndication files, you can limit
the size by specifying the maximum number of content items/sections
etc. to be written to a file. If this limit is reached, then several files will
be generated.

Check this option if you want sections to be exported.

Check this option if you want content items to be exported. If you only
want certain types of content item to be exported, enter a comma-
separated list of content type names in the field. If you
leave this field empty then all content types will be exported.

Check this option if you want section pages, lists and inboxes to be
exported.

You can use these fields to limit the export to objects that have been
modified within a specific period of time. You can, for example, only
export those objects that have changed or been added since the last
export was carried out.

Issue a Support Request

Whenever you send a support request to Vizrt, you should include full
information about your current server setup. The simplest way to do this is to:

P wihH

Select this option.

Copy the information listed on the displayed page.
Paste the information into the body of a mail.
Send the mail to support@escenic.com.

In some browsers you can create the mail automatically by clicking on the

link on the displayed page.

Component Browser

This option displays the Escenic component browser. The component
browser is a web application that you can use to:

View current configuration parameter settings of the Content Engine, its
associated web applications and publications.

Find out where the current configuration parameter settings come from
(that is, which particular configuration files they are set in).

Temporarily modify configuration parameter settings.

Copyright © 2003-2011 Vizrt

mailto:support@escenic.com

Escenic Content Engine Server Administration Guide

Content Engine components are uniquely identified by fully qualified names
consisting of a path and a name. The Content Engine's article list cache
component, for example, has the following fully qualified name: /neo/
io/content/cache/ArticleListCache. The components, in other words,
are effectively organized in a tree structure. The component browser lets
you navigate this tree structure and view the properties of Content Engine
components.

To view the properties of the ArticleListCache component, for example, you
would need to click on > > io > >

> . A page of information about the ArticleListCache
component is then displayed. It is divided into three sections: Properties,
Methods and Service Information.

2.1.13.1 Properties

The properties section of a component browser page lists the current property
settings of a component.

To change the setting of a displayed property:

1. Click on the property name. A new page is displayed, possibly containing

a field.
2. Enter a new value in the field (if displayed).
3. Click on

* Not all properties are editable. If a property cannot be edited, then no
field is displayed when you click on the property name.
* Changes you make in this way are temporary and will be reverted the
next time the server is restarted.
* Be careful! Don't change property settings on a live system unless you
are sure you know what you are doing.

2.1.13.2 Methods

The methods sections of a component browser page lists the component's
methods.

To execute a displayed method:

1. Click on the method name. A new page is displayed that contains a button
or link for invoking the method, and may also contain fields in
which you can enter method parameters.

2. Enter any required parameter values.

3. Click on the invocation button or link.

* Changes you make in this way are temporary and will be reverted the
next time the server is restarted.

¢ Be careful! Don't execute methods on a live system unless you are sure
you know what you are doing.

Copyright © 2003-2011 Vizrt Page 19

2.1.13.3

2.1.13.4

2.1.14

Page 20

Escenic Content Engine Server Administration Guide

Service Information

Component properties are set during system start-up: the Content Engine
reads them from .properties files. These files are named in the same
way as the components they configure. The properties of the /neo/
io/content/cache/ArticleListCache component for example, are
loaded from files called configuration-root/neo/io/content/cache/
ArticleListCache.properties that contain appropriate property settings
such as:

maxSize=300

The Content Engine has a layered configuration system in which such
property settings are loaded from a number of different locations. During
start-up, the Content Engine searches through a series of locations (or
configuration-roots) in turn and applies the settings it finds. The final property
settings displayed in the component browser, therefore, are a result of
merging all the settings found in these various locations. If a particular
property is set in several locations, the last setting wins.

The service information section contains listings of all the .properties files
loaded for a component, in the order they were loaded. You can therefore use
this section to find out where particular properties are actually set.

For more information about the Content Engine's configuration system, see
chapter 4.

Browsing Application and Publication Components

By default, the component browser displays the Content Engine's component
hierarchy. You can, however, also use it to examine the component hierarchy
of any web applications supplied with the Content Engine (the indexer web
application, for example) or the component hierarchy of any publication.

When you are browsing the Content Engine's own component hierarchy,

is displayed at the top of the component browser page. To
display a different component hierarchy, click on the
link displayed below this heading, then select the name of the "scope"” (i.e.,
application or publication) you want to browse.

Database Browser

This option displays the Escenic database browser. The database browser
provides a simply interface for submitting SQL queries to the database.

To use the database browser:

1. Enter an SQL query in the field.
2. Click on

The results of the query are then displayed on the page. The
field is displayed below the results (it may be off-screen), so you can
enter another query. All valid queries you enter are listed below the
field: you can re-use them by clicking on them or remove them

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

from the list by checking the check box before you click on

Click on to clear the field. Click on to recall
the last valid executed query.

This interface is provided to facilitate browsing of the Escenic database,
not editing. Do not execute any query that modifies the contents of the
Escenic database.

2.1.15 System Properties

This option displays a list of system-wide property settings.

2.1.16 View The Logging Levels

This option display the Escenic logging level editor, which you can use to
control what kinds of messages are added to the browser log (see section
2.1.6). All messages have two properties that are used by the logging level
editor:

category
This is a string that identifies the source of the message. If the
source is a Java program (which is usually the case), the string is
the fully qualified class name of the class that issued the message
(com.escenic.presentation.servlet.BootstrapFilter, for example).
Messages generated by template code, on the other hand, have
category strings defined by the template developer: template developers
are recommended to follow a similar "dotted" naming convention.

level
This is a keyword denoting the severity of the condition that caused the
message to be issued. The severity levels (from highest to lowest) are:

FATAL
indicates that a fatal error has occurred.

ERROR
indicates that a non-fatal error has occurred.

WARN
indicates that a possibly undesirable event has occurred.

INFO
indicates that a event of possible interest has occurred.

DEBUG
indicates that an event of possible significance in a debugging
situation has occurred.

TRACE
indicates that a traceable event has occurred.

Copyright © 2003-2011 Vizrt Page 21

2.1.16.1

2.1.16.2

Page 22

Escenic Content Engine Server Administration Guide

The logging level editor lets you use these two message properties to

control what messages are appended to the browser log. Messages

are selected by assigning levels to categories. All messages belonging

to that category that have the assigned level or higher will then

be appended to the log. Assigning the level ERROR to the category
com.escenic.presentation.servlet.BootstrapFilter, for example, will
cause any com.escenic.presentation.servlet.BootstrapFilter messages
with the level ERROR or FATAL to be appended to the log.

Instead of assigning one of the above level settings to
com.escenic.presentation.servlet.BootstrapFilter,

you can instead set the level to INHERIT. It will then inherit

whatever level is set for com.escenic.presentation.servlet; if
com.escenic.presentation.servlet is also set to INHERIT, then it will
inherit whatever is set for com.escenic.presentation and so on. This means
it is possible to set a general level for all messages by setting the level of the
special category root, and then just set any exceptions as required.

Changing Logging Level

To change the setting of one of the categories listed in the editor, simply
select the required logging level from the pull-down list on the right and click
on

To change the setting of a category that is not listed in the editor:

Check

2. Click on . This will cause all currently registered
categories to be displayed, including all those have their level set to
INHERIT.

3. Locate the required category and select the required level.
Un-check

5. Click on . You will see that the category is now listed in
the editor, because it has an explicit setting.

Adding Categories

Any categories defined in template code will not appear in the logging level
editor, even when is checked, unless they are
explicitly added. To add a new category:

1. Enter the name of the new category in the field.
2. Click on

The new category will initially be listed with its level set to INFO.

If template developers use the same "dotted" naming convention for their
messages as is used for Content Engine messages, then the same inheritance
rules are applied by the error logging system.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

2.1.16.3 Filtering The Category List

2.1.17

2.1.18

2.1.19

If you check , then the list of categories can be
very long. You can limit the list to show only the categories you are interested
in using the field. You can, for example, display only com
categories by entering com in the field and then clicking on

Remove Some Objects From Cache

This option allows you to clear specific objects from specific caches (which can
be useful for locating cache-related problems. You are recommended to use
this option rather than the option (see section 2.1.18) if
possible, as can have a significant effect on performance.

To use this option:

Select the type of object to be removed from the caches.
Select the caches from which the selected objects are to be removed.
Either:

¢ Enter an SQL query that will return the IDs of the objects to be
removed, or

* Enter the IDs of the objects to be removed.
Click . The selected object IDs displayed for confirmation.
5. If you are satisfied with the displayed object IDs, click

Clear All Caches

This option empties all the Content Engine's caches.

This option can have a significant effect on performance. You are advised
to avoid using it on live systems. If possible, use the
option instead (see section 2.1.17).

Lost User Wizard

In certain circumstances a misalignment between the Content Engine
database and the LDAP server used to manage user access can arise, resulting
in "lost users": user objects in the Content Engine that have no corresponding
LDAP entry. Such users are unable to log into the system. The lost user
wizard displays all lost users and allows you to reinstate them. The first

page displayed shows a list of lost users (if there are any). Simply follow the
displayed instructions to reinstate any users that are actually in use.

2.2

List pubs

This page lists all the publications currently served by the Content Engine, and
provides various publication management tools.

Copyright © 2003-2011 Vizrt Page 23

2.2.1

Page 24

Escenic Content Engine Server Administration Guide

It contains the following links:

Selects all listed publications.

Deselects all listed publications.

Selects all currently unselected publications and deselects all currently
selected publications.

Displays page containing useful information about one of the listed
publications, and links for accessing it in various ways.

Generates the indexes used by the article:list tag. For information
about why and when you would want to use this option, see Escenic
Content Engine Advanced Developer Guide, section 3.2.

Updates the resources of all currently selected publications. For further
information about this process, see section 2.2.1.

Deletes all currently selected publications. A new page is displayed on
which the names of all the selected publications are listed. To complete
the operation, click

Update Resources

The structure and characteristics of an Escenic publication are defined in a
set of files that are collectively referred to as publication resources. When
a publication is created, a set of publication resources must be uploaded to
the Content Engine as a basis for the publication. Changes to an existing
publication may often require these publication resources to be modified. The

option allows publication resources to be modified by
overwriting them with new versions.

For detailed information about the various publication resources, see the
Escenic Content Engine Resource Reference.

The usual procedure for updating publication resources is:

1. Prepare the updated resources and place them in a known location on
your local machine ready for upload.

2. Onthe escenic-admin page, select all the publications that
are to be updated (you may have several publications based on the same
resource set).

3. Select . A page containing the message "You have to
a resources first!" is usually displayed.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

4. Clickon . The Upload resources page is then displayed (see
section 2.4).

Select the correct resource type for the resource you intend to upload.
Click on and locate the resource you intend to upload.
Click on

If the resource is successfully uploaded and validated, click on

Repeat steps 2 and 3. This time, since you have now uploaded a resource,
the "You have to a resources first!" message is not displayed.
Instead, the resource(s) you have uploaded and the publications you
have selected for update are listed. To update the listed publications, click

O LN oW

2.3 New pubs

This page displays forms for creating new publications and for uploading the
resources required to create them.

The structure and characteristics of an Escenic publication are defined in a
set of files that are collectively referred to as publication resources. \When
a publication is created, a set of publication resources must be uploaded to
the Content Engine as a basis for the publication. For detailed information
about the various publication resources, see the Escenic Content Engine
Resource Reference.

The usual procedure for creating a new publication is:

1. Prepare a publication WAR file containing the required resources and
place it in a known location on your local machine ready for upload.

2. In escenic-admin, select . The Upload resources page is
then displayed (see section 2.4).

Select resource type option.
Click on and locate the publication WAR file.
Click on

If the WAR file is successfully uploaded and the resources in it are
successfully validated, click on . This displays the
Create Publication form.

Enter a name for the publication in the field.

8. Enter a password for the publication administrator in the
field and enter it again in the field.

ouv kAW

~

9. Clickon

It is also possible to upload the resources needed to create a publication
individually, rather than uploading them all together in a WAR file. For
information about this and a more detailed description of the

page, see section 2.4.

This section describes how to create a single publication. In order to be
able to use the publication, you must also deploy the web application that

Copyright © 2003-2011 Vizrt Page 25

Escenic Content Engine Server Administration Guide

will drive the publication (and possibly many other similar publications).
For information on how to deploy publication web applications, see
Escenic Content Engine Template Developer Guide, section
1.4.2.1.

2.4

Page 26

Upload Resources

This page is displayed both when updating publication resources using the
option (see section 2.2.1) and when creating new
publications using the option (see section 2.3).

To upload resources using this page you must:

1. Specify the type of resource you are going to upload by selecting one of

the options
2. Either enter the path of the resource to be uploaded in the
field or else click on the button and locate the
resource using the displayed file browser dialog.
3. Click on

The resource type options are:

A publication WAR file is to be uploaded. A publication WAR file contains
all the resources needed to define an Escenic publication. It will also
usually contain the JSP templates defining the web application that
drives the publication, and may contain syndication files with content to
be imported into the publication. This is the option you usually choose
when creating a new publication (although you can also use it when
updating existing publications). It is a convenient means of importing all
the resources in one go. The JSP templates, which are not required for
the purpose of creating new publication or updating resources are simply
ignored.

A content-type resource is to be uploaded. This is an XML file
defining all the content types a publication may contain. For a detailed
description, see Escenic Content Engine Resource Reference,
chapter 2.

A feature resource is to be uploaded. This is plain text file containing
property settings that set various Content Engine features for a
publication. For a detailed description, see Escenic Content Engine
Resource Reference, chapter 6.

An image-versions resource is to be uploaded. This is an XML file
defining all the different versions of images that a publication may
contain. For a detailed description, see Escenic Content Engine
Resource Reference, chapter 3.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

Not in use.

A layout-group resource is to be uploaded. This is an XML file defining
the layouts to be used on a publication section pages. For a detailed
description, see Escenic Content Engine Resource Reference,
chapter 4.

A syndication file is to be uploaded, containing content to be imported to
the publication. For general information about syndication files, see the
Escenic Content Engine Syndication Reference.

Select this option if you want to upload any other resource types
(for example, a plug-in resource type). You must then enter a string
identifying the resource type in the field.

The option not only uploads the specified resources, it also validates
them. After the upload operation, the page is redisplayed, this time with

an Available Resources section that contains a list of currently uploaded
resources showing their validation status. Any resource that fails to validate
is marked Not valid, and followed by an error message providing some
indication of what the problem is. If this happens, correct the error and upload
a new version of the resource.

If you want to upload several resources you can either package them in a
publication WAR file and upload that or else select the option several
times to upload them individually.

If you upload a complete set of publication resources that is sufficient to
create a publication, then a Create Publication section appears on the
page, containing the message "You now have enough resources to
". To create a publication from these resources, click on the
link.

Copyright © 2003-2011 Vizrt Page 27

Escenic Content Engine Server Administration Guide

\V|zrt\

Page 28 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

3 The indexer-webapp Web Application

An indexing web application called indexer-webapp is included with the
Escenic Content Engine. It receives content items passed to it by the Content
Engine's indexer web service and passes them on to Solr, the search engine
used by Content Studio (and also by most publication web applications). This
chapter contains a brief description of the indexer-webapp administration
interface and how to use it.

When the indexer-webapp iS running, you can access its administration
interface it by starting a browser and pointing it at:

http://your-server:8080/indexer-webapp/admin/

where your-server is the domain name or IP address of the server on which the
indexer-webapp iS running.

The administration interface is a single page divided into the following
sections:

* Configuration

* Current state

* Current Statistics
* Indexer actions

displays information about the configuration and current status of the indexer,
plus four buttons you can press to affect the operation of the indexer.

For more information about the current state of the search engine, visit the
Solr administration page by pointing your browser at:

http://your-server:8080/solr/admin/

where your-server is the domain name or IP address of the server on which
Solr is running. For information about about how to use this interface and
general information about Solr, visit http://lucene.apache.org/solr/.

3.1 Configuration

This section displays the following information about the indexer's
configuration:

Base Query URI
The URI of the Content Engine web service from which the documents
to be indexed are read. This URI is set in the Tomcat configuration file
context.xml (see Escenic Content Engine Installation Guide,
section 3.9).

Style sheet
The XSL stylesheet used to prepare documents for indexing.

Copyright © 2003-2011 Vizrt Page 29

http://lucene.apache.org/solr/

Escenic Content Engine Server Administration Guide

Update URI
The URI of the Solr instance to which index updates are sent. This URI is
set in the Tomcat configuration file context.xml (see Escenic Content
Engine Installation Guide, section 3.9).

3.2 Current State
This section displays information about the current state of the indexing
process. If Number of documents read but not yet processed is 0, then
indexing is complete. Click on your browser's button to update the
displayed information.

3.3 Current Statistics
This section displays statistics about the indexing process.

3.4 Indexer Actions

Page 30

Under normal operation, the indexer starts by indexing the most-recently
modified content item and works backward to the least-recently modified
content item. While it is doing so, new changes may be made: existing content
items may be modified, new content items created. The indexer prioritizes

the indexing of these newly-modified and newly-created content items, and
interrupts the indexing of older content in order to deal with them. Eventually,
however, the indexer will index the least-recently modified content item, and
then only need to deal with incoming changes.

The buttons in the administration interface affect the indexing process as
follows:

Aborts the current indexing process (whether or not the indexer has
succeeded in reaching the least-recently modified content item) and
restarts it from the most recently modified content item. As it works
backwards it will update the indexes of previously indexed content items.

Re-indexing may be necessary for a variety of reasons (it is often

required after installing a new version of the Content Engine).
Re-indexing may take a long time (possibly hours). During this
period, searches executed in Content Studio may return incomplete
results.

Clicking on this button displays a new page containing the message

Reindexing. ... To redisplay the administration page, simply click on

your browser's button.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

Temporarily suspends the current indexing process. You can resume the
process by clicking on the button.

Clicking on this button displays a new page containing the message
Indexer is now paused.... To redisplay the administration page,
simply click on your browser's button.

Resumes an indexing process that has previously been suspended using
the button.

Optimizes the index. Old indexes can become fragmented and
disorganized. Selecting this option sends an optimization request to Solr.
Solr then creates a new, reorganized and optimized copy of the existing
index. When the optimized copy is complete, the old index is deleted.

Do not select this option unless you are certain that there is
sufficient disk space available on the Solr host. (In order to optimize
an index you need enough free disk space to hold another two
copies of the index.)

Clicking on this button displays a new page containing the message
Optimizing index. ... To redisplay the administration page, simply click
on your browser's button.

Copyright © 2003-2011 Vizrt Page 31

Escenic Content Engine Server Administration Guide

\V|zrt\

Page 32 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

4 Configuring The Content Engine

For configuration purposes, the Content Engine is regarded as a hierarchy

of configuration objects representing various parts of of the system. These
configuration objects are called called components. Each component

has properties that can be set in a corresponding configuration file. The
configuration files are standard Java properties files with a well-defined format
(see the Javadoc description of java.util.Properties.load(java.io.InputStream)).

The configuration files are stored in a folder tree that reflects the component
hierarchy. At the top of a Content Engine configuration tree, for example,

you will find files such as ServerConfig.properties, containing very
general configuration settings. At the bottom of the folder tree are files

such as /etc/escenic/engine/common/com/escenic/webservice/search/
DelegatingSearchEngine.properties that contain detailed settings for very
specific parts of the system.

4.1

Configuration Layers

The Content Engine's configuration system is not only hierarchical, it is

also layered. What this means is that a Content Engine installation can
contain several configuration trees in different locations. These trees can be
considered as layers because they are read in sequence, each layer adding
new property settings or overwriting settings already made in lower layers.
Right at the start of the configuration process, the Content Engine loads a
special configuration layer called the bootstrap layer, which configures the
configuration process itself. It does this by defining:

* How many configuration layers there are
* The relative priority of the layers
* Where the layers are located

Once this has been done, the various layers are loaded in turn and merged
into the final server configuration.

The purpose of this layering is to simplify both the upgrade process and the
management of large multi-server installations as follows:

* The Content Engine is delivered with a default configuration layer,
which has lowest priority, and an add-on configuration layer that can be
used by add-ons to make any changes that they require. You should never
modify these layers, since they are overwritten when the Content Engine
and/or add-ons are upgraded, and your changes will be lost.

* Also delivered with the system is a skeleton configuration layer that
you can use as a basis for creating configuration layers of your own. You
will need to create at least one site-wide configuration layer called the
common configuration layer. In this layer you can override default
settings that do not meet your site's requirements.

Copyright © 2003-2011 Vizrt Page 33

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

Escenic Content Engine Server Administration Guide

* If you are running a multi-host site, you will also probably need to create
additional configuration layers for each host that override any properties
for which host-specific settings are required. These are referred to as host
configuration layers.

* You can create even more layers: on large multi-host sites you may have
"families" of hosts that perform the same function, and therefore have
many configuration settings in common. It may then make sense to create
family configuration layers between the common configuration layer
and the host configuration layers.

Note that the individual layers do not need to be complete: a layer can consist
of just one .properties file, and a .properties file does not need to contain
settings for all of a component's properties.

Configuration layers can be loaded from three different types of location or
depot:

* JAR files in the classpath
* Explicitly specified JAR files
* Specified file system locations

The default configuration layer and the plug-in configuration layer are loaded
from JAR files in the classpath.

You are recommended to create your common configuration layer (and

any other layers you need) in the file system, ideally in the /etc/escenic/
engine folder. The delivered bootstrap layer is configured to look for your
configuration layers in this location. For detailed information on how to create
configuration layers, and how to modify the bootstrap layer so that they are
read in the correct order, see section 4.3.

4.2

Page 34

Configuration File Format
A configuration file consists of a sequence of assignments of the form:

keyword=value

Each assignment must appear on a separate line. Lines can however be
broken by using the backslash (\) as a continuation character. The use of the
equals sign is optional (it can be replaced by white space). Otherwise white
space is ignored.

Lines that start with either "#" or "!" are treated as comments and discarded.
In most cases:

keyword
is the name of a property

value
is the value to be assigned to the property

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

One of the keywords may be the special keyword $class. In this case value
must be the fully qualified name of a class. This tells the system to create an
object of the specified class: the properties specified in the rest of the file are
assigned to this object. A complete property file must in fact include such an
assignment, since there must be an object to assign properties to. However,
this assignment is always included in the default layer configuration files,

so it can usually be omitted from configuration files in higher layers. (Note,
however, that if you add a configuration file to one of your layers that does
not exist in any of the supplied lower layers, then this class assignment is
required.)

Complex Properties

Most properties in the configuration files have simple values such as integers,
string or booleans. More complex assignments can be made, however:

Component objects
Components can be "wired together" by means of property assignments.
Component A, for example, may have a property that needs to be
set to reference component B. This kind of property can be set by an
assignment of the following form:

keyword = component-path/component-name

For example:

otherComponent = /mycomponents/Important

The component path does not have to be absolute. You can also specify
a path relative to the folder of the current component. For example:

otherComponent = ../../Important

Arrays
Array properties can be set by separating the values in the array with
commas, for example:

numbersToCheck = 10,20,30,45,70
Maps

Mapped properties can be set by a series of assignments of the following
form:

keyword.key = value

For example:

component.3 /mycomponents/Important

component.?2 /mycomponents/LessImportant

component.1l /mycomponents/Unimportant

Note that mapped properties are set in alphabetical key order (1, 2, 3

in this case), not the order in which they appear in property files. This
ensures a fixed order of creation even when the assignments are spread
across several configuration layers.

Copyright © 2003-2011 Vizrt Page 35

Page 36

Escenic Content Engine Server Administration Guide

Variables

The values assigned to properties can include placeholders for variables.
When the property is assigned, the placeholder is replaced by the value of the
variable it references. The syntax for a variable placeholder is:

${variable-reference}
Four different kinds of variable reference are supported:

System property references
variable-reference can be the name of any system property. For
example:

myUrl = http://${escenic.server}:8080/my/page/

Component property references
variable-reference can be a reference to any component property. It
must have the form:

component-path/component-name.property-name

For example:

myImportantValue=${/mycomponents/Important.value}

JNDI references

variable-reference can be a reference to any JNDI name. It must have the
form:

jndi: jndi-name
For example:

providerUrl=${jndi:java:comp/env/LDAP_PROVIDER URL}

JNDI references are particularly useful as a means of creating
configurations that can be used in more than one environment (both a
test environment and production environment)

Environment variable references
variable-reference can be a reference to any operating system
environment variable. It must have the form:

env:environment-variable

For example:

importantOsValue=${env: IMPORTANT}
Configuration File Encoding

Configuration files, in accordance with the rules for standard Java properties
files, must be encoded using the 1ISO-8859-1 character set. If you need to
include characters outside this character set, then you can do so using the
following syntax:

\uxxxx

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

where xxxx is the hexadecimal Unicode value of the required character. The
use of the backslash as an escape character to introduce Unicode values
and as a continuation character means that you must always repeat any
backslashes that you want to appear in the file. This Windows path, for
example:

C:\my\windows\path

will be read as:

C:mywindowspath

unless you repeat the backslashes as follows:

C:\\my\\windows\\path

Example

The following example illustrates some the property types discussed above.

$class = com.mycompany.SomeClass
numbersToCheck = 10,20,30,45,70,\
131,199,343,546

otherComponents = ./Other
somePath = ${/ServerConfig.filePublicationRoot}/myroot
Fruits

fruit.apple /mycomponents/Apple

fruit.orange /mycomponents/Orange

fruit.banana /mycomponents/Banana

It contains the following items:

* The creation of a component object.
* An array of numbers, with a line break.

* Areference to another component called Other in the same folder as this
one.

* A path composed of the value of the serverConfig component's
filePublicationRoot property and the string value /myroot.

* A comment.

* A mapped property called 'fruit' with three values. Note that the properties
will be created in alphabetical order, not the order which they appear. Also
note the omission of the '=' sign, which is not required.

4.3 Managing The Configuration Layers

The first time the Content Engine is installed, the assembly tool's initialize
target creates the bootstrap layer in /opt/escenic/assemblytool/conf. The
bootstrap layer is predefined to look for the following configuration layers, and
read them in the specified order:

default layer (in the delivered Content Engine JAR files)
add-on layer (in add-on JAR files)

common layer (in /etc/escenic/engine/common)

family layer (in /etc/escenic/engine/family/family-name)
host layer (in /etc/escenic/engine/host/host-name)

u b W N -

Copyright © 2003-2011 Vizrt Page 37

4.3.1

4.3.2

Page 38

Escenic Content Engine Server Administration Guide

The following sections tell you how to:

* Create the common configuration layer
* Add a host configuration layer

* Add a family configuration layer

e Add further layers

* Change the location of a layer

Create The Common Configuration Layer

A skeleton configuration layer is provided in /opt/escenic/engine/
siteconfig/config-skeleton. To create a common configuration layer from
this skeleton, log in as escenic and copy the configuration layer to /etc/
escenic/engine/common.

$ cp -r /opt/escenic/engine/siteconfig/config-skeleton/* /etc/escenic/engine/common/

You can now configure your whole Escenic installation by modifying the
.properties files in the /etc/escenic/engine/common/ tree.

Add A Host Configuration Layer

If your Escenic installation is spread across more than one host machine,

then you will almost certainly need to set some properties differently on the
different hosts. You can do this by creating a host configuration layer which is
read after the common configuration layer. Any settings made in this layer will
therefore override settings made in lower layers.

Obviously the contents of this layer need to be different for each host. The
recommended method of doing this is to keep all your configuration layers (in
fact the whole /etc/escenic tree) in a shared folder. If you have set up your
system in this way, then you can create a set of host layers as follows:

1. Create an /etc/escenic/engine/host/host-name folder for each host:

$ mkdir -p /etc/escenic/engine/host/host-name

2. Copy the files containing the properties you are interested in overriding
from the skeleton configuration layer to the corresponding relative
location in each host-name folder.

3. Modify each of the copied .properties files as required.

This will work because the location of the host configuration layer is
defined as follows in /opt/escenic/assemblytool/conf/layers/host/
Files.properties:

fileSystemRoot=/etc/escenic/engine/host/${hostname env:HOSTNAME env:COMPUTERNAME "localhost"}/

If you are using a different location for your configuration layers, then you will
need to modify this setting and redeploy (see section 4.3.5).

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

4.3.3

4.3.4

Add A Family Configuration Layer

In really large installations with many servers, you may decide that it makes
sense to define "families" of hosts that have similar functions (a "publishing"
family and a "presentation" family, for example), and define corresponding
configuration trees that enable them to be controlled as a group. Any
properties that you want to be the same for all publishing hosts can then be
set once in this layer rather than being set separately for each host in the host
configuration layer.

You can create a family configuration layer in the same way as a host layer:

1. Create an /etc/escenic/engine/family/family-name folder for each
family:

S mkdir -p /etc/escenic/engine/family/family-name

2. Copy the files containing the properties you are interested in overriding
from the skeleton configuration layer to the corresponding relative
location in each family-name folder.

3. Modify each of the copied .properties files as required.

The location of the family configuration layer is defined as follows in /opt/
escenic/assemblytool/conf/layers/family/Files.properties:

/etc/escenic/engine/family/${com.escenic.config.engine.family "default"}

In order for this setting to work, the system property
com.escenic.config.engine.family must be set on each host to the name
of the family to which the host belongs.

If you are using a different location for your configuration layers, then you will
need to modify this setting and redeploy (see section 4.3.5).

Add Further Layers

If you want, you can add further layers to create an even more flexible
configuration system. To add an extra configuration layer between the family
layer and the host layer, for example, you would need to:

1. Open /opt/escenic/assemblytool/conf/Nursery.properties in a text
editor.

2. Change this setting:

layer.05=/layers/host/Layer

to:

layer.06=/layers/host/Layer

3. Add a property defining your new layer (we'll call it "group") as layer 05:

layer.05=/layers/group/Layer

4. Create two new .properties files: /opt/escenic/assemblytool/conf/
group/Layer .properties and /opt/escenic/assemblytool/conf/
group/File.properties. /opt/escenic/assemblytool/conf/group/
Layer.properties should contain the following:

Copyright © 2003-2011 Vizrt Page 39

4.3.5

Page 40

Escenic Content Engine Server Administration Guide

Sclass=neo.nursery.PropertyFileConfigurator
depot=./Files

and /opt/escenic/assemblytool/conf/group/File.properties should
contain:

$class=neo.nursery.FileSystemDepot
fileSystemRoot = /etc/escenic/engine/group/${escenic.group}

5. You can now create group configuration layers in exactly the same way as
you created host and family layers, and use system properties to select
the required layer in the same way.

Run the assembly tool.
Deploy the results.
Restart.

The bootstrap layer will never be overwritten by the assembly tool once it has
been created, so any changes you make are persistent. If the bootstrap layer
should ever be deleted, however, a new one can be created by running the
assembly tool's initialize target.

Change The Location of a Layer

To change the location of one of the layers:

1. Openthe File.properties file for the layer you want to move.
For example, to move the common layer, open /opt/escenic/
assemblytool/conf/common/File.properties.

Edit the fileSystemRoot property to point to the required location.
Copy your common configuration layer to the new location.

Run the assembly tool.

Deploy the results.

o vk WwWwN

Restart.

The bootstrap layer will never be overwritten by the assembly tool once it has
been created, so any changes you make are persistent. If the bootstrap layer
should ever be deleted, however, a new one can be created by running the
assembly tool's initialize target.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

5 Search Engine Configuration

The Content Engine's search functionality is provided by Apache Solr, a Java-
based open source search engine that runs as a web application alongside the
Content Engine. A copy of Solr is bundled with the Content Engine, and if you
follow the standard installation procedure described in the Escenic Content
Engine Installation Guide, then a solr instance is deployed alongside
every Content Engine you deploy. All Content Studio search functions depend
on Solr, and Solr can also be used to drive the search functions in your
publication web applications.

The use of an external search engine that is completely decoupled from

the Content Engine ensures a high degree of flexibility. It is possible to
configure the search engine and the other components involved in providing
search functions in many different ways to meet differing requirements. The
components involved in providing the Content Engine's search functions are:

indexer web service
The indexer web service runs inside the Content Engine. It maintains a
change log for all content managed by the Content Engine. Every time a
content item is added, modified or deleted, the indexer web service adds

entries to its log containing the URIs of the documents affected by the
change.

indexer web application
The indexer web application runs inside an application server together
with the solr web application. Every five seconds, it submits a requests
to the indexer web service and obtains the URIs of all the documents
that have changed in the last 5 seconds. It then submits requests to the
Content Engine for these documents, passes them through an XSL filter
to prepare them for indexing and posts the results to solr.

solr
solr also runs inside an application server. It generates and maintains
an index based on the documents submitted by the indexer. It also
responds to any search requests submitted to it, either from Content
Studio clients or from publication web applications.

5.1 The Standard Configurations

In a standard Content Engine installation, both solr and the indexer
application are deployed alongside the Content Engine in the same Tomcat
instance. The solr instance is used to provide search functionality for Content
Studio. Template developers can optionally use the same solr instance

to provide search functionality for their publication web applications. The

Copyright © 2003-2011 Vizrt Page 41

Page 42

Escenic Content Engine Server Administration Guide

following illustration shows a single-host installation of the Content Engine set
up in this way:

Content Studio

: Editorial/presentation host
client

- — P e mm mm o = o oy

| webapp container Tomcat

| |

S —@ '

- indexer web service E) I | |
| |

| |

O indexer webapp I :
| |

| |

| |

Content Engine

‘ solr webapp

D publication webapp

In a multiple-host installation, the hosts on which the Content Engine runs
are typically specialized: some are editorial hosts, supporting a network
of Content Studio clients, while others are presentation hosts supporting
public access to the organization's publications. The default configuration
of the search components (as described in the Escenic Content Engine
Installation Guide) is, however, almost the same:

Editorial host Editorial host

| webapp container (Tomcat)

r —

- = = = =

indexer web service

[l '
|
|
indexer webapp I I
|| Content - 1 I] Content -
‘ |

R |

solr webapp Engine I jLEngine

publication webapp

Presentation Presentation Presentation
ost host

:EI |

| |

| |

| |
| | | |
I] content -I I] content -I I| content -
| Engine 1 | Engine 1 | Engine

J

h
|
|

The only difference between the two configurations is that in the multiple-
host configuration, only one instance of the indexer web service is used, for
reasons of efficiency. Using the web service in every Content Engine can result
in a lot of unnecessary database accesses. The web service used by each
indexer web application is specified by means of an Environment element

in the Tomcat context.xml file, as described in Escenic Content Engine
Installation Guide, section 3.9.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

5.2

5.2.1

5.2.2

Modifying The Standard Configuration

The standard search configuration works, but may not work very well in many
contexts. This section discusses some of the kinds of changes you can make,
and some of the issues involved.

Customizing the Index Schema

The default solr index schema delivered with the Content Engine is optimized
for editorial purposes: it indexes all the fields needed to support the search
functionality provided by Content Studio, resulting in very large indexes. This
is acceptable in the editorial context, since the number of concurrent Content
Studio users, even in a very large organisation, is not likely to be very large.
The presentation hosts in a large Escenic installation, however, can be
required to serve many thousands of concurrent users, and the default solr
configuration may perform poorly in this context.

In other words, the default configuration is fine for the editorial hosts in a
production system, but for the presentation hosts you are recommended
create a custom indexer configuration that only indexes the fields actually
needed to support the kinds of search required in your publications.

To do this, open var/lib/escenic/schema.xml for editing on each of

your presentation hosts, and modify the index schema to meet your
requirements. Editing this file is outside the scope of this manual. In order

to tune the search engine you need to take account of both the contents of
your publications, your users' needs with regards to search and the limitations
imposed by your particular hardware configuration. For further information
and advice on tuning, see the Solr documentation on http://lucene.apache.org/
solr/.

Isolating The Search Engine

Searching and indexing can be resource-intensive processes. Co-locating solr
with the Content Engine can therefore sometimes prove to be a bad idea,
especially in the case of presentation hosts, which may need to respond

to large numbers of simultaneous searches and ordinary document requests.
However, since the Content Engine, solr and the indexer are all independent
web applications that communicate via standard, stateless HTTP requests, you
can locate them wherever you want in order to achieve the best possible load
distribution.

The following sections describe two different ways of isolating the search
engine:

* Running the search engine in a separate webapp container.
* Running the search engine on a separate host.

For a production system you should never use the default configuration
where solr runs in the same webapp container as the Content Engine.
The reason for this is that solr can at times consume large amounts

Copyright © 2003-2011 Vizrt Page 43

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

5.2.2.1

Page 44

Escenic Content Engine Server Administration Guide

of memory and trigger large garbage collection operations in the JVM,
which has severe effects on Content Engine performance. At production
installations, solr must be run in a separate JVM from the Content
Engine if you don't want to run into unnecessary performance problems.
The simplest way to achieve this is to run it in a separate webapp
container (that is, a separate Tomcat instance) as described in section
5.2.2.1.

Search Engine in Separate Container

The following illustration shows a single-host installation where solr is running
in a separate webapp container:

1
- —

O
o

O

Content Studio
client

Editorial/presentation host

webapp container

|

|

= |

indexer web service E) I
& |eom---f-

ﬁ Tomcat 2 I

|

|

|

Content Engine
publication webapp] e e e e o omm -

indexer webapp

solr webapp

— — — 1

To do this you would need to:

1.

Install a second Tomcat instance on your host. Make sure you set it up to
listen on another port than your main Tomcat instance.

Remove the solr and indexer web applications supplied with the Content
Engine from your original Tomcat instance.

Deploy the solr and indexer web applications supplied with the Content
Engine on the new Tomcat instance.

On your assembly host you will find a folder called /opt/escenic/
engine/contrib/rmi-hub/1lib. Deploy the JAR files you find in this folder
by copying them to a suitable location on the new Tomcat instance's
classpath.

You should also find a folder called /opt/escenic/engine/contrib/
rmi-hub/config/com on your assembly host. Deploy the configuration
layer in this folder by copying it to a suitable location on the new Tomcat
instance's classpath.

Add the following Environment elements to your new Tomcat instance's
context.xml configuration file:

<Environment name="escenic/indexer-webservice"
value="http://localhost:8080/indexer-webservice/index/"
type="java.lang.String" override="false"/>

<Environment name="escenic/index-update-uri"
value="http://localhost:8081/solr/update/"
type="java.lang.String" override="false"/>

<Environment name="escenic/solr-base-uri"

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

value="http://localhost:8081/solr/"
type="java.lang.String" override="false"/>
<Environment name="escenic/head-tail-storage-file"
value="/opt/escenic/indexer/head-tail.index"
type="java.lang.String" override="false"/>
<Environment name="escenic/failing-documents-storage-file"
value="/opt/escenic/indexer/failures.index"
type="java.lang.String" override="false"/>

This sets up the indexer web application to use the indexer web service
on the original Tomcat instance (port 8080 in this example) and the solr
installation on the new Tomcat instance (port 8081 in this example).

7. Modify your Content Engine configuration to use the new solr
installation. To do this you need to edit configuration-layer-root/com/
escenic/webservice/search/DelegatingSearchEngine.properties
and set the solrURI property as follows:

solrURI=http://publ.example.com:8081/solr/select

(assuming your new Tomcat instance is listening on port 8081).

Isolating solr in this way would ensure that it does not have too severe

an effect on the operation of the Content Engine. Ultimately, of course,
performance is limited by the hardware the installation is running on, but
separating solr from the Content Engine in this way will avoid a major
cause of unnecessary performance degradation. If solr activity still causes
performance problems, then you should consider moving solr to a different
host as described in section 5.2.2.2.

5.2.2.2 Search Engine on Separate Host

The following illustration shows a multi-host installation where solr is running
in a single, dedicated search host:

| webapp container (Tomcat) Search host Editorial host Editorial host

|
- -—-———- Fa AN Y

indexer web service

O indexer webapp

Content

solr webapp Engine

publication webapp

Prepentation Prer;entation
host host
P et —-—==a

| I O

|
|
1 | 1 |
I Engine 1 I Engine 1

To do this you would need to:

e Install Tomcat on your search host.

Copyright © 2003-2011 Vizrt Page 45

Escenic Content Engine Server Administration Guide

* Deploy the solr and indexer web applications supplied with the Content
Engine on the search host.

* Copy the solr configuration files supplied with the Content Engine to
the search host, making sure to modify the index schema to meet your
requirements, as described in section 5.2.1.

* Modify your publication web applications to use the solr instance on your
search host.

Isolating solr in this way would ensure that re-indexing, for example, does
not adversely affect response times on your presentation hosts. However,
it would also make the search host a single point of failure. A more robust
solution would be to have two or more search hosts, and direct requests to
them via a load balancing and/or fail-over service so that:

* Requests are evenly distributed between the search hosts
* If one host fails, requests are re-directed to other hosts

Load balancing/fail-over strategies can be implemented in many different
ways using a variety of different standard products and technologies.
Exactly how you do this is outside the scope of this manual: the point is that
since all the components involved in searching and indexing communicate
via standard, stateless HTTP requests, you can do it using standard web
management techniques.

Page 46 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

6 Caching

In order to reduce the load on the database, the Content Engine maintains

a number of internal caches. Objects and other items of information loaded
from the database are cached in memory, and may in fact be cached in more
than one of the caches. Once an item has been added to a cache, it is retained
until:

The item is modified
Any item that is modified is automatically deleted from the cache.

The cache is full
The cache has a maximum size. When the cache reaches this maximum
size, some items are deleted from the cache to make room for the new
arrivals. The least-recently used items are deleted.

The cache is manually flushed
The caches can be manually flushed using escenic-admin. See section
6.1 for details.

The server is shut down
Whenever the server is shut down or restarted, all caches are flushed.

A typical example of a cache configuration file, would look like this:

maxSize=1000
validSeconds=-1
throwCount=300
objectLimit=10000
objectsToKill=100

6.1 Flushing Caches

Caches can be flushed while the server is running. To do so:

1. Gotothe escenic-admin application's component browser. (For
details, see section 2.1.13).

2. Use the component browser to find the cache component you want to
reset.

3. Invoke the cache component's £lush method. For instructions on how to
do this, see section 2.1.13.2.

6.2 Tuning The Object Caches

You can tune the object caches by setting the following cache properties:

maxSize
The maximum number of objects allowed in the cache.

Copyright © 2003-2011 Vizrt Page 47

Page 48

Escenic Content Engine Server Administration Guide

throwCount
The number of objects that will be removed from the cache once
maxSize is reached. You should normally set it to at least 10% of
maxSize, since the process of identifying which objects to remove carries
an overhead. If you set throwCount very low, then a small number of
objects will be removed very frequently. Removing a larger number of
objects less often is usually more efficient.

validSeconds
You can use this property to set a time threshold (in seconds) after which
objects are removed from the cache. This prevents modified objects
from surviving in the cache too long. However, the Content Engine is in
general efficient at removing invalid objects, so it can usually be set to
-1 (which disables this process).

These properties are set by editing configuration files. For general information
about editing Escenic configuration files, see section 4.2. You can also make
temporary changes to cache settings while the Content Engine is running
using the escenic-admin application's component browser (see section
2.1.13).

Ideally, all caches should be large enough to hold all the elements ever added
to it: this would mean an element would never need to be loaded from the
database more than once. In practice, this is unlikely to be possible due to
memory limitations, so trade-offs must be made. Tuning the object caches is
therefore usually a trial-and-error process aimed at finding the best possible
set of trade-offs for a particular installation. If cache limits are set too low,

the database will be accessed too often, resulting in reduced performance. If
cache limits are set too high, memory can be overloaded, which also results in
reduced performance. It is worth noting, however, that a high cache limit can
only cause problems if the cache space is actually used: setting a cache limit
too low, however, is guaranteed to have some effect on performance.

In general, the best way to tune the caches is to regularly check the
performance summary displayed on the escenic-admin application's

page (see section 2.1.3). This summary contains
a general section for the Content Engine's caches, plus individual
sections listing information about the caches in each web application. For
information on how to interpret the statistics displayed in these tables, see
section 2.1.3.1.

When determining cache sizes you also need to take into account how much
memory they will occupy, and this is a function of both the number of objects
in the cache and the size of those objects. This is particularly significant in the
case of web applications' PresentationArticleCaches, since the size of the
objects held in them can vary widely. If a publication's typical content items
are large, then its PresentationArticleCache may become very large. If you
know the average size of the articles in a publication, then you can estimate
the memory the cache is likely to consume as follows:

If an 'average' document is 15KB of plain (8-bit) text (either HTML or XML),
it will basically occupy 30KB as a Java object because Java uses 16-bit

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

6.2.1

6.2.1.1

6.2.1.2

encoding internally. In addition, there is a fixed overhead of around 5KB per
article, giving a total memory requirement of around 35KB. So if you set the
PresentationArticleCache's maxSize property to 10000 documents, the
cache may require up to 350 MB of memory.

The following sections contain some basic items of useful information about
each of the object caches listed on the escenic-admin
page. The following information is provided about each cache:

* The cache component name. This is the name you use to locate the cache
in the component browser (although the easiest way to find it is just to click
the cache's link on the escenic-admin page).

* The cache configuration file name. This is the file you need to create
or edit to make permanent changes to the cache configuration. Global
Content Engine cache configuration files may be added to one or more of
your configuration layers. For information about configuration layers, see
section 4.3. Web application cache configuration files must be added to
the web application's WEB-INF/localconfig folder.

* Typical object size. You need this to work out how much memory the cache
will use when it is full.

Global Caches

The caches described in the following sections are the global caches displayed
on the escenic-admin page. Other global caches
may appear on this page if plug-ins have been installed.

AgreementCache

Cache component name
/neo/io/content/cache/AgreementCache
Cache configuration file

configuration-layer-root/neo/io/content/cache/
AgreementCache.properties

Typical Average Object Size

1Kb.

ArticleListCache

Cache component name
/neo/io/content/cache/ArticleListCache
Cache configuration file

configuration-layer-root/neo/io/content/cache/
ArticlelistCache.properties

Copyright © 2003-2011 Vizrt Page 49

Escenic Content Engine Server Administration Guide

Typical Average Object Size

1Kb.

6.2.1.3 ArticleSourceMap
Cache component name
/neo/io/content/cache/ArticleSourceMap
Cache configuration file

configuration-layer-root/neo/io/content/cache/
ArticleSourceMap.properties

Typical Average Object Size
1Kb.

6.2.1.4 ArticleXmlCache

6.2.1.5 CatalogCache
Cache component name
/neo/io/content/cache/CatalogCache
Cache configuration file
configuration-layer-root/neo/io/content/cache/CatalogCache.properties

Typical Average Object Size

1Kb.

6.2.1.6 ExternalContentCache
Cache component name
/neo/io/content/cache/ExternalContentCache
Cache configuration file

configuration-layer-root/neo/io/content/cache/
ExternalContentCache.properties

Typical Average Object Size

1Kb.

Page 50 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

6.2.1.7

6.2.1.8

6.2.1.9

6.2.1.10

LayoutCache

Cache component name

/neo/io/content/cache/LayoutCache

Cache configuration file
configuration-layer-root/neo/io/content/cache/LayoutCache.properties
Typical Average Object Size

1Kb.

ObjectCache

Cache component name

/io/api/ObjectCache

Cache configuration file
configuration-layer-root/io/api/ObjectCache.properties
Typical Average Object Size

1Kb.

PublicationCache

This cache's maxSize should be set to a large enough value to ensure that
it never needs to be flushed. (that is, large enough to hold references to
all sections of all publications).

Cache component name
/neo/io/content/cache/PublicationAttributeCache
Cache configuration file

configuration-layer-root/neo/io/content/cache/
PublicationAttributeCache.properties

Typical Average Object Size

1Kb.

ReferenceEntityCache

Cache component name

/neo/io/content/cache/ReferenceEntityCache

Copyright © 2003-2011 Vizrt Page 51

6.2.1.11

6.2.1.13

Page 52

Escenic Content Engine Server Administration Guide

Cache configuration file

configuration-layer-root/neo/io/content/cache/
ReferenceEntityCache.properties

Typical Average Object Size

1Kb.

RelationshipCache

Cache component name
/io/api/RelationshipCache
Cache configuration file

configuration-layer-root/io/api/RelationshipCache.properties

Typical Average Object Size
1Kb.

SectionCache

This cache's maxSize should be set to a large enough value to ensure that
it never needs to be flushed (that is, large enough to hold references to all
sections of all publications).

Cache component name

/neo/io/content/cache/SectionCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/SectionCache.properties

Typical Average Object Size
1Kb.

SectionParameterCache

Section parameter caching can be disabled by setting the

property parameterCache to 'false' in neo/io/managers/
SectionManager.properties. In production this property should aways
be set to true, which is the default. This property should set to be false in
template development environments, like this:

parameterCache=false

Cache component name

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

/neo/io/content/cache/SectionParameterCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/
SectionParameterCache.properties

Typical Average Object Size

1Kb.

6.2.1.14 SectionSourceMap
Cache component name
/neo/io/content/cache/SectionSourceMap

Cache configuration file

configuration-layer-root/neo/io/content/cache/
SectionSourceMap.properties

Typical Average Object Size
1Kb.

6.2.2 Web Application Caches

6.2.2.1 PresentationArticleCache
Cache component name

/neo/xredsys/presentation/cache/PresentationArticleCache

Cache configuration file

webapp /WEB-INF/localconfig/neo/xredsys/presentation/cache/
PresentationArticleCache.properties

Typical Average Object Size

Very variable, very publication dependent, but often somewhere between 20
and 40Kb.

6.2.2.2 PresentationListCache

Cache component name

/neo/xredsys/presentation/cache/PresentationListCache

Cache configuration file

Copyright © 2003-2011 Vizrt Page 53

6.2.2.3

6.2.2.4

Escenic Content Engine Server Administration Guide

configuration-layer-root/neo/xredsys/presentation/cache/
PresentationlListCache.properties

Typical Average Object Size

1Kb.

PresentationPoolCache

This cache's maxSize should be set to a large enough value to ensure that
it never needs to be flushed.

Cache component name

/neo/xredsys/presentation/cache/PresentationPoolCache

Cache configuration file

configuration-layer-root/neo/xredsys/presentation/cache/
PresentationPoolCache.properties

Typical Average Object Size

1Kb.

PresentationSectionCache

This cache's maxSize should be set to a large enough value to ensure that
it never needs to be flushed.

Cache component name
/neo/xredsys/presentation/cache/PresentationSectionCache
Cache configuration file

configuration-layer-root/neo/xredsys/presentation/cache/
PresentationSectionCache.properties

Typical Average Object Size

1Kb.

6.3

Page 54

Distributed Caching

In a multi-server installation, each server running the Content Engine has its
own set of caches, and all these caches must be synchronized with each other
to some extent. Specifically, whenever a change is made that can potentially
cause an item in a cache to become invalid, that change must be reported

to all servers, so that the appropriate caches can be checked and the invalid
item can be removed, if necessary. The basic mechanism is that the Content

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

Engine generates an event each time a potentially cache-invalidating change
is made. At the same time, the Content Engine also listens for such events
generated by other Content Engine instances, and when it receives such an
event, checks the appropriate cache and if necessary, removes the invalid
item.

There are, however, two ways to set up distributed caching:

¢ Using an RMI hub. An RMI (remote method invocation) hub acts as a
central clearing house for cache invalidation events. It listens for events
from all change-generating servers, and passes the events on to all
servers.

* Using a mesh set-up. In this case there is no hub, and all servers must
be explicitly configured to listen for events from all change-generating
servers.

In a typical multi-server installation, different servers have different functions.
There are two basic server types:

Publishing servers
A publishing server is a 'back-end' server used by editorial staff to create
and modify publication content using Content Studio.

Presentation servers
A presentation server is a 'front-end' server used to serve publication
content.

As a general rule, therefore, a publishing server is a change-generating server,
and a presentation server is not. This is, however, not always the case, since
some publications include functionality that enables "reader participation”

of one kind or another. If the Forum plug-in is installed, for example, then
presentation servers will also be change-generating servers.

The following sections describe both kinds of distributed caching set-up.

Whichever caching set-up you use, you should make sure to set the
java.rmi.server.hostname system property on all your Content Engine
instances. Each Content Engine instance should have this property set to
its own host name or IP address.

6.3.1 With RMI Hub

The RMI hub is a special application included with the Content Engine
distribution. You can install it in order to simplify the management of multi-
server installations. It provides the easiest way of implementing distributed
caching, especially for larger installations with many servers.

In order to use an RMI hub, each Content Engine instance must be configured
with the IP address of the RMI hub and with a unique name with which to
identify itself to the hub. On start-up, each Content Engine instance registers

Copyright © 2003-2011 Vizrt Page 55

6.3.1.1

Page 56

Escenic Content Engine Server Administration Guide

with the RMI hub. All invalidation events received by the RMI hub are then
broadcast to all registered Content Engines.

The RMI hub is run as a stand-alone process, started from a Shell script. It can
run either on the same host machine as a Content Engine instance, or alone
on a dedicated host. The RMI hub and the registered Content Engine instances
may be restarted independently of each other.

Setting up your installation to use an RMI hub involves two main tasks:

e Setting up the RMI hub itself

» Configuring the Content Engine instances in your installation to use the RMI
hub

These tasks are described in the following sections.

RMI Hub Set-up

All you need to run the RMI hub is supplied in the /opt/escenic/engine/
contrib/rmi-hub folder. This folder contains:

* A classes sub-folder containing just one file, trace.properties. This file
defines logging levels and the log output file name for the RMI hub.

* A config sub-folder containing a configuration tree for the RMI hub. This
folder tree contains a configuration layer like the main Content Engine
configuration layers described in chapter 4, but specific to the RMI hub.

* hub.sh, a shell script for starting the RMI hub.

To set up the RMI hub:

1. Copy the components in the /opt/escenic/engine/contrib/rmi-hub
folder to new locations where they will not be overwritten when new
versions of the Content Engine are installed. The recommended locations

are:

Component Recommended location

1ib folder /opt/escenic/rmi-hub/lib
classes folder /opt/escenic/rmi-hub/classes
config folder /etc/escenic/rmi-hub

hub.sh /usr/local/bin

For example:

$ mkdir /opt/escenic/rmi-hub/
mkdir /etc/escenic/rmi-hub/
cp /opt/escenic/engine/contrib/rmi-hub/lib /opt/escenic/rmi-hub/

cp /opt/escenic/engine/contrib/rmi-hub/classes /opt/escenic/rmi-hub/

$
$
$
$ cp /opt/escenic/engine/contrib/rmi-hub/config/* /etc/escenic/rmi-hub/

then log in as root to copy hub.sh to /usr/local/bin:

cp /opt/escenic/engine/contrib/rmi-hub/hub.sh /usr/local/bin/

2. While still logged in as root, open hub. sh for editing, locate the variable
HOSTNAME and set it to the host name or IP address of your RMI hub.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

If your RMI hub has the IP address 172.16.3.10, for example, then you
could set it as follows:

HOSTNAME=172.16.3.10

The .properties files in the configuration layer should not need to be edited,
so you can now start the RMI hub simply by executing hub. sh.

6.3.1.2 Content Engine Set-up

To set up your Content Engine instances to use the RMI hub, you need to edit
four configuration layer .properties files. For general information about

configuration layers and how to edit them, see section 4.1. The files you
need to edit are:

configuration-layer-root/neo/io/managers/
HubConnectionManager.properties
The following properties must be set for this component:

hub=rmi://hub-address:1099/hub/Hub
The location of the hub. Replace hub-address with either the
host name or the IP address of the host machine on which your
RMI hub is installed. This property is common for all Content

Engine instances in the cluster, so it can be set in the common
configuration layer.

hostname=address
The host name or IP address of the host machine on which this

Content Engine instance is installed. This property is host-specific,
so it must be set in a host configuration layer.

In a standard installation, default values should work for this
component's other properties.

configuration-layer-root/Initial.properties
Add the following property to this component (in the common layer):

service.l.6-rmi-hub-manager=/neo/io/managers/HubConnectionManager

The addition of this property ensures that the hub connection manager is
started.

configuration-layer-root/io/api/EventManager.properties

The following properties must be set for this component (in the common
layer):

clientConfiguration=/neo/io/services/HubConnection

This tells the event manager to poll the HubConnection service for
events.

pingTime=10000
This tells the event manager to poll for events every 10 seconds.

Copyright © 2003-2011 Vizrt Page 57

6.3.2

Page 58

Escenic Content Engine Server Administration Guide

configuration-layer-root/neo/io/services/
RemoteExpireService.properties
For change-generating servers only, add the following property to this
component:

clientConfiguration=/neo/io/services/HubConnection

This tells the RemoteExpireService to send invalidation events to the
HubConnection service. Since this setting is only required on change-
generating servers, you should add the property to the appropriate host
configuration layers (or possibly to a family configuration layer).

Mesh Set-up

If you choose not to use an RMI hub, then change-generating servers must
send invalidation events to all other servers rather than sending them just to
the RMI hub.

To set up your installation in this way, you need to edit the following
configuration layer .properties files. For general information about
configuration layers and how to edit them, see section 4.1. The files you
need to edit are:

configuration-layer-root/Initial.properties
Make sure the following properties are set for all servers (that is, set
them in the common layer):

service.l.l-remote-expire=/neo/io/services/RemoteExpireServiceBootstrap
service.l.2.5-api=/io/api/RMIBootstrap

configuration-layer-root/io/api/EventManager.properties
For change-generating servers only, the remoteServers property must
be contain a comma-separated list of servers to which invalidation
events must be set. There must be one entry in the list for every other
Content Engine instance in the installation, and each entry must have
the form:

host-address:8123

where host-address is either the host name or IP address of the host on
which the target Content Engine instance is running.

Since this setting is only required on change-generating servers, you
should add the property to the appropriate host configuration layers (or
possibly to a family configuration layer).

configuration-layer-root/neo/io/services/
RemoteExpireService.properties
For change-generating servers only, the remoteManagers property
must be contain a comma-separated list of EventManagers to which
invalidation events must be set. There must be one entry in the list for
every other Content Engine instance in the installation, and each entry
must have the form:

rmi://host-address:8123/io/api/EventManager

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

where host-address is either the host name or IP address of the host on
which the target Content Engine instance is running.

Since this setting is only required on change-generating servers, you
should add the property to the appropriate host configuration layers (or
possibly to a family configuration layer).

The following examples show the configuration for two change-generating
servers (inputl and input2), and two presentation-only servers
(presentationl and presentation2).

Here are the properties that need to be set in configuration-layer-root/
Initial.properties (Common layer):

service.l.l-remote-expire=/neo/io/services/RemoteExpireServiceBootstrap
service.l.2.5-api=/io/api/RMIBootstrap

Here are the properties that need to be set in the host configuration layer for
inputl. First configuration-layer-root/io/api/EventManager.properties:

remoteManagers=rmi://input2:8123/io/api/EventManager, rmi://presentationl:8123/io/api/EventManager, \
rmi://presentation2:8123/io/api/EventManager

then configuration-layer-root/neo/io/services/
RemoteExpireService.properties:

remoteServers=input2:8123, presentationl:8123, presentation2:8123

Here are corresponding properties for input2. First configuration-layer-root/
io/api/EventManager.properties:

remoteManagers=rmi://inputl:8123/io/api/EventManager, rmi://presentationl:8123/io/api/EventManager, \
rmi://presentation2:8123/io/api/EventManager

then configuration-layer-root/neo/io/services/
RemoteExpireService.properties:

remoteServers=inputl:8123, presentationl:8123, presentation2:8123

You can see from the above example that in a large installation with many
servers, it can be quite difficult to ensure that these properties are correctly
set on all servers. That is why the RMI hub set-up is recommended.

Copyright © 2003-2011 Vizrt Page 59

Escenic Content Engine Server Administration Guide

\V|zrt\

Page 60 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

7 Bootstrapping

By default, when the Content Engine is started, all its caches are empty. In

a test or development environment, where activity is usually very low, this

is not a problem. For a production system running a busy site, however, the
level of requests can be so high as to completely cripple the site if all requests
have to be fully processed rather than served from the cache. For this reason,
the Content Engine includes an InitialBootstrapper component that can

be used to protect the Content Engine from traffic during start-up, allowing it
to prime the caches with frequently-requested pages before it is required to
respond to real requests.

The InitialBootstrapper component works by:

* Intercepting incoming requests and returning HTTP 503 responses (Service
Unavailable).

* Simultaneously submitting a series of dummy requests for frequently
requested pages, thereby priming the caches with content that will
enable fast responses to many requests when the bootstrap sequence is
completed.

Bootstrapping is initialized on a per-publication basis by setting the
bootstrapOnStartup parameter in each publication's feature resource. The
bootstrapOnStartup parameter allows you to specify the individual sections
of a publication that are to be bootstrapped. For a detailed description, see
Escenic Content Engine Resource Reference, section 6.6 .

Details of how the InitialBootstrapper component carries out the bootstrap
operation can be controlled by setting properties in the configuration-layer-
root/neo/io/content/InitialBootstrapper.properties configuration file,
described in the following section.

7.1

InitialBootstrapper

InitialBootstrapper inherits properties from:
* java.lang.Object
It also has the following properties of its own:

secondsToWait (read/write)

int
The number of seconds that the InitialBootstrapper should wait before
trying to load the publications. Note that this time should include
the time it takes from Escenic components loading to the application
server being ready and accepting requests. If this value is too low, then
requests may be stopped by the server, and the component will fail. If
this value is too high, then the startup time of Escenic might appear to

Copyright © 2003-2011 Vizrt Page 61

Escenic Content Engine Server Administration Guide

be longer than nessecary. It is by default set to wait 60 seconds. It is
better that this value is too high rather than too low.

timeoutSeconds (read/write)

int
The number of seconds to try retrieving a publication. By default, if
a publication has not finished bootstrapped within 30 seconds, it will
continue to the next publication.

threadCount (read/write)

int
the number of simultaneous threads to use when bootstrapping.
Typically this should be set to the same number of processors

articlesToRetrieve (read/write)

int
The number of articles to retrieve from the front page. Typically, the
default value of "1" is satisfactory. The bootstrapper will keep trying to
retrieve articles until it successfully loads this number of articles from
the front-page.

articlesToAttempt (read/write)

int
The number of articles to attempt to retrieve from the front page.
Typically, the default value of "5" is satisfactory. This means that after 5
failed attempts it will stop trying to retrieve articles from the section in
question, and move on to the next.

depth (read/write)

int
The default depth to try to probe when going throught the section
tree. By default, a publication's top section along with its children are
probed, i.e. the depth is set to 2. Setting this property has effect when
the bootstrapOnStartup is set to the keyword true. This value can be
overridden on a per-publication basis, by specifying a number in the
bootstrapOnStartup feature.

failureThreshold (read/write)

int
The number of failures that are to be tolerated in a publication. By
default, the bootstrapper will stop accessing a publication if it fails 5
sections.

token (read-only)

String
The value of the token that the initial bootstrapper will use as a query
parameter when issuing the HTTP requests.

bootstrappedPublications (read-only)

String
A list of publications that were bootstrapped when the bootstrapper was
run.

Page 62 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

bootstrapped (read/write)

boolean
Wether or not all publications have been bootstrapped. This value may
be set to true before or during bootstrapping, and any running bootstrap
threads will stop their work. This property must be false in order for
bootstrapping to start. When bootstrapping is finished, this property is
automatically set to true. By default, this property is false upon startup,
and after bootstrapping, will be true.

threadRunning (read-only)

boolean
true if any bootstrapping is happening right now, false otherwise. Simply
an indicator of wether or not the bootstrapper is active.

Copyright © 2003-2011 Vizrt Page 63

Escenic Content Engine Server Administration Guide

\V|zrt\

Page 64 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

8 Throttling

The Content Engine has a a number of throttle services that you can use to
limit the number of concurrent requests that various parts of the system will
attempt to handle. Once the specified threshold is reached, requests to the
overloaded part of the system will be refused.

The following throttle services are available:

WebServiceThrottle
Limits access to the Content Engine web service used by Content Studio.

DatabaseUpdateThrottleService
Limits the number of concurrent database updates.

DatabaseReadThrottleService
Limits the number of concurrent database reads.

JspThrottleService
Limits the number of concurrent page requests.

The throttle services are all enabled by default and set up with default
configurations. You should not switch the throttle services off in a production
environment, as overload situations are then likely to be handled in an
unpredictable manner. You can, however, configure the throttle services by
editing the appropriate files in one of your configuration layers (see chapter
4).

All the throttle services are instances of the ResourceThrottle class, and
are configured by setting ResourceThrottle properties. The most important
property you can set is maximumConcurrent, which determines the maximum
number of concurrent requests that will be handled.

For webServiceThrottle, DatabaseUpdateThrottleService and
DatabaseReadThrottleService, maximumConcurrent is set by default

to 100, which is a relatively high value that can most likely be left

unmodified. Database accesses should normally be controlled by the

database system itself, so DatabaseUpdateThrottleService and
DatabaseReadThrottleService can be seen as "failsafe" devices that will
only ever be needed if something is badly configured elsewhere. Similarly,
usage of the Content Engine's web service is unlikely under normal operation
ever to reach a level of 100 concurrent accesses, even in large installations, so
if this limit is ever reached, it is probably a sign that something is wrong.

JspThrottleService, on the other hand, is not just a failsafe device, it is
vital to ensuring that the Content Engine handles periods of high activity in

a controlled manner. Moreover, the optimum setting for maximumConcurrent
is entirely installation-dependent, and must be based on experience and
testing. For this reason, the default value is deliberately set set to a low value
of 10. There is no sensible default: you must observe the Content Engine's
performance and arrive at the optimum setting by trial and error.

Copyright © 2003-2011 Vizrt Page 65

Escenic Content Engine Server Administration Guide

In order to find out the optimum settings in a production environment,
you need to examine performance numbers, and the number of HTTP
503 messages returned. The escenic-admin application's
option displays a page of performance data including an
section containing throttle activity data (see section 2.1.3.3).

The column in the section shows the
current number of concurrent accesses. Above the section,
the /neo/io/reports/HitCollector entry in the Load Averages section
shows the request load reaching the Content Engine. The field

shows how many requests have failed or been rejected. If failures are

being recorded by the /neo/io/reports/HitCollector, and you see that
incrementations of this value coincide with high values for the
JspThrottleService, then maximumConcurrent is probably set too low.

All the throttles are implemented using the ResourceThrottle class, and
therefore have the same set of configuration properties, described in the
following section.

8.1

Page 66

ResourceThrottle

ResourceThrottle inherits properties from:
* java.lang.Object
It also has the following properties of its own:

maximumConcurrent (read/write)

int
The maximum number of concurrent usages of a specific resource. This
number decides how many simultaneous clients can use the resources at
a time.

availableCapacity (read-only)

int
The number of free resources that this throttle attempts to govern.
This number changes every time someone checks in a resource, or the
maximumConcurrent value changes.

overloadMessage (read/write)

String
The message that clients can use when handling the case in which
the server has been overloaded. The hard-coded default message is
"Resources Exhausted".

activeResources (read-only)

Collection
A list of string representations of all active resources. If a resource has
become unavailable for a prolonged period of time, this will show what
the resource is being used for.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

serviceRunning (read-only)

boolean
Whether or not the service is running. This flag is modified by
doStartService and doStopService.

serviceEnabled (read/write)

boolean
Whether or not the service is enabled. If the service is disabled, no log
of activity will be kept, and no attempts to use resources (checkout) will
fail.

8.2

Per-Publication Throttling

By default, the same throttle controls access to all publications. It may be,
however, that you want to isolate the publications from one another, so
that a traffic spike on one publication does not affect the performance of
other publications. You can do this by defining additional throttle service
components like the default /neo/io/services/JspThrottleService
component. You can then:

* Configure different publications to use different throttle services.
* Set the maximumConcurrent property individually for each publication.

Note that doing this does not increase the total capacity of the server. If
maximumConcurrent was already set to its optimum value in a single throttle
set-up, then this number of concurrent requests must be shared out between
the throttle services in the new set-up.

To set up additional throttle services:

1. Create a .properties file for each throttle service you want to create
in one of your configuration layers. You might, for example, create a file
called configuration-layer-root/throttles/MyThrottle.properties:

2. Add the following class definition.

Sclass=neo.util.ResourceThrottle

3. Add the additional property settings you require. For example:

maximumConcurrent=>5

4. Since you've added new throttle services, you will probably need
to reduce the maximumConcurrent setting of the default throttle
service (/neo/io/services/JspThrottleService) accordingly.
To do this, edit configuration-layer-root/neo/io/services/
JspThrottleService.properties. (You may need to create this file if it
does not already exist in the configuration layer.)

5. For every publication web application that is to use the new throttle
service, you must edit the WEB-INF/web.xml file. Open the file, find the
ECETimerFilter definition and add a new parameter definition as a child
of the init-param element:

<init-param>
<param-name>throttle</param-name>

Copyright © 2003-2011 Vizrt Page 67

Escenic Content Engine Server Administration Guide

\VIZI't\

<param-value>/throttles/MyThrottle</param-value>
</init-param>

The throttle parameter must be set to the name of the new throttle
service (/throttles/MyThrottle in this case).

Page 68 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

9 Performance

This chapter is intended to provide you with a starting point for identifying
and solving the problems involved in ensuring that your Escenic site performs
and scales well. The information it contains is general in nature, but wherever
numbers are discussed, they are based on an assumption that the site will
need to serve around 50 000 simultaneous users.

The architecture shown in the following diagram should cater for such
numbers and includes all the components discussed in this chapter.

HW load balancer[Fassa=s= yITIIIITII I]

Content Studio

Copyright © 2003-2011 Vizrt Page 69

Escenic Content Engine Server Administration Guide

9.1 Scalability
Ensuring the scalability of a typical Escenic site is fundamentally a matter of
correctly caching the content. It involves:
* Correctly tuning the Content Engine caches (see chapter 6).
* Running a distributed memory cache (memcached) to ease the load on the
databases (see Escenic Content Engine Installation Guide, section
4.3)
* Running a well-configured cache server, such as Akamai, Squid or Varnish in
front of the application servers.
You will need:
* 6-8 engine hosts
* 2 database hosts
* Some kind of high availability solution for the file system (using HA proxy
and virtual IPs, for example)
* An LDAP and RMI hub
* 2-4 cache servers (multiplied by two if you are using Squid 2.x).
9.2 Web Server Set-up
The cache servers will in most cases also run a web server of some kind. Most
of the advice given below is applicable in general terms whatever web server
you use, but the specific examples are based on the Apache web server.
9.2.1 Web Server Tuning

Page 70

Your web server needs to be tuned before going into production. The standard
configuration included with the Apache distribution (or with our OS software
package) is not optimised for high load web sites and you will therefore need
to modify it. It is particularly important to configure the mpm_common worker
module for production use. Be sure to read and understand the documentation
for this module and then continue to these more general Apache performance
guides:

e http://httpd.apache.org/docs/2.2/misc/perf-tuning.html
e http://www.devside.net/articles/apache-performance-tuning

Do not use the prefork MPM worker, use the multi-threaded worker
instead.
The Apache worker is set at compile time. Thus, if you have compiled it from
source, check your build (configure) options to be sure the multi-threaded
worker is selected. If you have installed Apache from RPM/DEB packages, you
can usually use rpm -ga | grep -i apache Or dpkg -1 "*apache*mpm" to
make sure that the high speed worker is being used.

This example shows how to configure the Apache worker for production use.

Copyright © 2003-2011 Vizrt

http://akamai.com
http://squid--cache.org
http://varnish.projects.linpro.no
http://en.wikipedia.org/wiki/High_availability
http://haproxy.1wt.eu/
http://en.wikipedia.org/wiki/Virtual_IP_address
http://httpd.apache.org/
http://httpd.apache.org/docs/2.2/mod/mpm_common
http://httpd.apache.org/docs/2.2/misc/perf-tuning.html
http://www.devside.net/articles/apache-performance-tuning

Escenic Content Engine Server Administration Guide

9.2.2

worker MPM

<IfModule worker.c>

We could increase ServerLimit to 64 and ThreadLimit/MaxClients to 8192,
but be aware of the OOM of Death!!

initial number of server processes to start
http://httpd.apache.org/docs/2.2/mod/mpm common.html

#startservers
StartServers
ServerLimit 32

minimum number of worker threads which are kept spare
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#minsparethreads
MinSpareThreads 512

maximum number of worker threads which are kept spare
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#maxsparethreads
MaxSpareThreads 1024

upper limit on the configurable number of threads per child process
http://httpd.apache.org/docs/2.2/mod/mpm_ common.html

#threadlimit
ThreadLimit 4096

maximum number of simultaneous client connections
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#maxclients
MaxClients 4096

number of worker threads created by each child process
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#threadsperchild
ThreadsPerChild 128

maximum number of requests a server process serves
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#maxrequestsperchild
MaxRequestsPerChild 10000
</IfModule>

Make sure that you have a good understanding of the MaxKeepAliveRequests
and KeepAliveTimeout parameters. The following values:

MaxKeepAliveRequests 1000
KeepAliveTimeout 5

work well in many production sites today. However, your needs may be
different and you should therefore be careful when setting these parameters.

Why You Need a Web Server

It might seem tempting to remove the web server in order to simplify your
server setup, especially since some cache servers (such as Varnish) offer
powerful URL rewriting facilities, easy manipulation of HTTP headers and
advanced access control lists.

However, production sites without a web server are rare, and if you plan to
offer personalised sites (with user login, etc.), session binding is required.
Some cache servers (such as Oracle Web Cache) have built-in session binding
but others, such as Varnish, do not. Therefore, web servers are likely to be

Copyright © 2003-2011 Vizrt Page 71

Escenic Content Engine Server Administration Guide

needed for the foreseeable future. For more on session binding, see section
9.8.1.

9.3

9.3.1

Page 72

Database Performance

Database performance has an indirect impact on page rendering time and the
responsiveness of the Content Engine as a whole. The effect of the database
on overall performance is reduced by the Content Engine's caching strategy,
but it is not eliminated. If a performance problem arises that appears to
originate in the database, then it may be necessary to examine the database
queries being executed in order to locate the "problem" SQL statements.

Identifying Slow Transactions

The Content Engine measures the time taken to execute every SQL statement.
The escenic-admin application's option (see
section 2.1.3) displays a page of performance data that includes the average
and peak access times for database engine queries and updates:

Database Engine Queries:
Since last sample:
2 db queries;
effective 0.00Hz;
average 4ms; peak 6ms;
load 0.00 (delta -0.00);
0 failures;
Total:
44 db queries;
average 32ms.

Database Engine Updates:
Since last sample:
862 db transactions;
effective 1.58Hz;
average 2ms;
peak 27ms;
load 0.00 (delta -0.00);
0 failures;
Total:
14148 db transactions;
average 8ms.

These figures give you some idea of how the database is performing: a well-
performing database will usually have an average access time of around 10
milliseconds for both queries and updates.

If a database operation takes more than 10 seconds (10,000 milliseconds), the
Content Engine logs the transaction with an ERROR message in the log. The
message contains information about the internal Content Engine transaction
being performed, and may in some cases contain the actual SQL query being
executed. If your database regularly has peaks of over 10 seconds, you should
look in the log file to see what kinds of transactions are causing the problems.

The 10 second threshold for logging database transactions as errors is not
fixed: you can set the threshold higher or lower by configuring the /neo/io/
managers/ContentManager component. To change the error threshold for read
transactions, set the readThreshold property. To change the error threshold
for write transactions, set the updateThreshold property.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

You can reset these properties at run time using the escenic-admin

application's option (see section 2.1.13). In this way
you can easily set the properties to catch the peak access times currently
being reported by the option and find out what

operations are causing the problems.

9.3.2 Troubleshooting Slow Transactions

If you find what looks like a particularly slow SQL transaction, you can
configure the Content Engine to generate additional diagnostic information.
You do this by setting up a connection wrapper, which generates diagnostic
information for every SQL statement executed.

To set up a connection wrapper:

Start a browser and point it at the escenic-admin application.
Select the option (see section 2.1.13).

Navigate to the /neo/io/managers/ContentManager component.

P wihH

Set the connectionWrapper property to the value /neo/io/connector/
DebugConnection.

Once you have done this, diagnostic information is output to the

Content Engine's log file for each SQL statement executed. You can
determine the amount of information output by using the escenic-admin
logging level editor (see section 2.1.16) to set the logging category
neo.dbaccess.ConnectionWrapper to one of the following values:

INFO
Logs the SQL statements themselves before they are executed.

DEBUG
Additionally logs the positional parameters of the prepared statements,
as they are set.

You can now see all the SQL statements executed in the log, but you still don't
know which particular statement is slow, nor do you necessarily know exactly
how or why the individual statements come to be executed. You may have
suspicions regarding some of the statements, however. You can set up the
connection wrapper to dump the call stacks of these statements to the log.
You should then be able to find from the stack traces which template files are
responsible for the statements.

To generate stack dumps in this way you need to set the /neo/io/
managers/ContentManager component's stackdumpRegExp property to a
regular expression that matches the SQL statement(s) you are interested

in. If, for example, you are interested in all statements involving the
ArticleMetaContent table, then you can set it to /ArticleMetaContent/i
(the "i" at the end indicates that the expression is case insensitive). Then any
SQL statement containing the string "articlemetacontent" will trigger a stack
dump of the current thread to standard error.

Copyright © 2003-2011 Vizrt Page 73

9.3.3

9.3.4

Page 74

Escenic Content Engine Server Administration Guide

Note that using the component browser to configure a connection
wrapper as described above is a temporary measure: the connection
wrapper will disappear the next time the Content Engine is restarted. You
can configure it permanently by editing configuration-layer-root/neo/
io/managers/ContentManager.properties in one of your configuration
layers (see chapter 4. This is not recommended for production servers,
however, as it incurs a slight performance penalty.

Similarly, you can permanently set the logging level for
neo.dbaccess.ConnectionWrapper by editing your trace.properties

file (see chapter 11 for details).

Getting the Database to Scale

The real limitation governing the scalability of most read-heavy sites is the
number of available database handles. Scaling up the application server layer
does not make sense if the database can only deal with a limited number

of read/write handles. Some high-end Oracle cluster solutions may possibly
help solve this problem, but MySQL clusters cannot be used since they do not
support sub-queries. Standard master/slave configurations are therefore the
only option. As far as Vizrt is aware, all current Content Engine sites are based
on master/slave database configurations, regardless of what database they
use.

It is important to remember that both the read and write connection
pools in ECE must be configured to work on the master database
instance. The slave databases are for data redundancy (standby backup)
only, and should not be used to serve requests as this may cause
unforeseen behaviour.

You are recommended to install memcached on each of your engine-hosts.
memcached acts as a layer on top of the most important Content Engine cache,
/neo/xredsys/presentation/cache/PresentationArticleCache, and
significantly reduces the number of database read operations. See Escenic
Content Engine Installation Guide, section 4.3 for details of how to install
memcached on your engine-hosts.

Percona Server

One way of improving database performance at MySQL-based sites, is to
replace your standard MySQL server with Percona Server. Percona is a heavily-
optimized high-performance build of MySQL. It is designed to be a drop-in
replacement for MySQL and offers, in addition to improved performance, a
number of improved diagnostics and management features. It is in use at a
number of Content Engine installations and is known to perform well.

Percona is, like MySQL, open source software.

Copyright © 2003-2011 Vizrt

http://mysql.com
http://memcached.org

Escenic Content Engine Server Administration Guide

9.4 The TCP/IP Stack

The TCP/IP stack also imposes scalability limitations. How many simultaneous
open TCP connections can your front-end servers handle, and how many open
connections can be handled by the back-end components supporting them?
Each layer in your software stack communicates with the layer below via TCP:
load balancer -> cache server -> application server -> database/LDAP server/
file system. There need to be sufficient connection handles available at each
level to prevent bottlenecks occurring.

Each connection made to the load balancer results in a corresponding request
to a cache server, so you need sufficient connection handles here to handle
whatever maximum number of simultaneous requests you have decided upon.
The cache servers should respond directly to a large number of requests, so
you will need a much smaller number of connection handles between the
cache servers and the application servers. Similarly, some requests will be
responded to directly by the application server, so an even smaller number

of connection handles is required for communication between the application
server and the database, LDAP server and file system.

In order for your installation to perform well, the relationships between

the number of connection handles available at each level in your server
architecture must reflect the actual requirements of the traffic reaching your
site.

9.4.1 Caching Servers

For the caching servers in the front layer of your server architecture you need
have a clear understanding of TCP connection scalability issues.

The first thing you may notice as the load on your system increases, is that
the cache server process runs out of file handles (unless its start script
increases the right kernel parameter). This is because the operating system
uses one file handle for each connection, and on many systems the default
number of handles a single user process is allowed to create is 1024. This
problem can be temporarily fixed with the ulimit -u command (on Linux and
FreeBSD). To fix it more permanently you need to edit /etc/sysctl.conf (On
Linux and FreeBSD) or /etc/system (0n Solaris). You can set the maximum
number of file handles up to several hundred thousand, so there is no real
limitation here.

The operating system set up TCP connections between a local port and an
anonymous port on the requesting host:

cache01:2323 -> otherhost:1237

Port numbers are defined in the TCP protocol as an unsigned 16-bit number
which gives a maximum of 65535 ports. The local port number can, however,
be re-used for connections to different hosts:

cache01:2323 -> otherhost:1237
cache01:2323 -> yetanotherhost:4545

Copyright © 2003-2011 Vizrt Page 75

Escenic Content Engine Server Administration Guide

This means that the maximum theoretical number of connections a cache
server can handle is:

(65535 - reserved-ports) * incoming-ip-addresses

where reserved-ports is the number of ports reserved for system services by
the operating system (usually 1024).

For this to work well, the load balancer in front of the cache must be
transparent: that is, it must supply the IP address of the request source and
not its own IP address.

For example, if three users are visiting your web site:

userl:2213 -> load-balancer:80 -> cache01:80
user2:1212 -> load-balancer:80 -> cache01:80
user3:5333 -> load-balancer:80 -> cache01:80

then ideally, cache01 should see the IP addresses of the requesting clients
(userl, user2 and user3) rather than the IP of the load balancer. Your cache
server will then be able to handle as many TCP connection as your load
balancer can pass on (given that your operating system kernel manages to
allocate and recycle enough TCP connections fast enough).

If this is not possible then an alternative (but less satisfactory solution) is to
increase the maximum number of possible connections by adding additional
interfaces (and corresponding IP addresses) to the load balancer and/or the
cache server.

9.5 Searching with Solr

For guidance on how to scale the Solr search engine in a multi-host
environment, see chapter 5.

9.6 Avoiding Single Points of Failure

A Content Engine's LDAP server, RMI hub and NFS server are all potential
single points of failure: if they go down and you haven't done anything to
prevent it, your web site will go down too. The only way to solve this problem
is to duplicate these components: you have the same software installed

on two hosts, but only run it on one of them, keeping the other ready as a
backup. A heartbeat daemon (see http://haproxy.lwt.eu) is used to monitor
the availability of the service and, if it goes down, start the service on the
backup host.

This heart beat/fail over solution should also include a virtual IP address for
the host running the critical service. All users of the service access it via the
virtual IP address. If the service's primary host goes down and the heart beat
starts the service on a backup host, the virtual IP address is moved from the
primary host to the backup host. This ensures that no configuration changes
are needed to any of the components using the service. Any components
using the service at the time of failure will lose all current transactions and

Page 76 Copyright © 2003-2011 Vizrt

http://haproxy.1wt.eu

Escenic Content Engine Server Administration Guide

connections, but operation will resume on the backup host for any subsequent
requests/transactions.

9.7 Optimizing the Operating System Kernel

A newly-installed operating system is not optimized for any particular use: its
default settings are designed to cater for a wide range of different uses. For
a server that is dedicated to performing a specific task, therefore, it makes
sense to adjust the operating system's settings in order to maximize the
performance of the software installed on it.

You can optimize the Linux kernel by editing /etc/sysctl.conf, and you can
list the current kernel settings by entering:

sysctl -a

You can find the names of all the possible kernel parameters you can set

by browsing the /proc/sys tree in the file system. The kernel parameter
net.ipv6.route.max_size, for example, corresponds to the file /proc/sys/
net/ipvé/route/max_size.

For further information, see your operating system documentation, starting
with the sysctl and sysctl.conf man pages.

Here is an example showing how to tune the Linux kernel (tested on 2.6.24)
for running an Apache web server and Varnish cache server. Some of the
settings here may in fact be redundant, but nevertheless, this configuration
is known to work and has a proven track record of serving several high traffic
web sites:

net.core.rmem max=16777216
net.core.wmem max=16777216
net.ipv4.tcp_rmem=4096 87380 16777216
net.ipvéd.tcp_wmem=4096 65536 16777216
net.ipvéd.tcp fin timeout = 3
net.ipvd.tcp_tw_recycle = 0
net.core.netdev_max_backlog = 30000
net.ipvé4.tcp_no metrics_save=1l
net.core.somaxconn = 262144
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans = 262144
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_synack_retries = 2
net.ipvéd.tcp_syn retries = 2

9.8 Highly Interactive Sites

Highly interactive sites that incorporate social networking functionality, such
as sites based on the Viz Community Expansion, have additional requirements.
They can contain large amounts of user-generated information, and displayed
pages frequently contain personalized and dynamic elements. it is therefore
necessary to consider performance in the following additional areas:

e Session binding
e Edge Side Includes (ESI)
* LDAP

Copyright © 2003-2011 Vizrt Page 77

9.8.1

9.8.2

9.8.3

Page 78

Escenic Content Engine Server Administration Guide

If you are implementing a straightforward content-based site that does
not offer large-scale user interaction, you can ignore this section.

Session Binding

For any Content Engine site that allows visitors to create user profiles and log
in, you are recommended to make use of Apache's mod_proxy balancer for
providing sticky sessions and load balancing.

Be aware that you cannot use application server clustering (that is, sharing
sessions between your application servers) since this requires that all objects
written to the session object are serializable. Currently, this requirement

is not met by all Content Engine objects, and you therefore need to bind all
sessions to one specific application server. You can either do this in your web
server (for example, Apache's mod_proxy balancer, as mentioned above) or
alternatively in some cache servers, such as Oracle Web Cache.

Edge Side Includes

Edge Side Includes (ESI) is an XML-based language (and a W3C standard) that
allows web page and template developers to include caching requirements in
their page mark-up. This makes it possible to establish a differential caching
policy that caches different parts of a page for different lengths of time. A
page is essentially broken up into fragments with different caching policies.
Some highly dynamic fragments (the number of messages in a user's inbox,
for example) may be cached for a very short time or not at all, while parts that
are likely to change less often (such as a news article or blog entry) can be
cached for much longer. Big IP, Varnish, Akamai, Oracle Webcache and Squid 3
all support ESI.

The basic idea is that the application developer, who is the person best placed
to know how long a given fragment should be cached, sends that information
to the cache server in the form of ESI directives. With Varnish at least, no
additional configuration is required to make the cache server respect ESI
directives. This example shows how to set a cache time of one minute on a
fragment.

<%@ taglib uri="http://jakarta.apache.org/taglibs/response-1.0" prefix="response"%>

<response:addHeader name="Cache-Control">
s-maxage=60
</response:addHeader>

Template developers need to be aware that using ESI imposes constraints
on how they structure their templates. They must also be sure to set the s-
maxage HTTP header in entry point JSPs (the ones that directly respond to
HTTP requests rather than being included by other JSPs).

LDAP

Perhaps the biggest challenge when building a large-scale a social networking
site based on the Content Engine is the challenge of providing write access for
thousands of users. And the first obstacle in the way of achieving that is the

Copyright © 2003-2011 Vizrt

http://www.oracle.com/technology/products/ias/web_cache
http://www.w3.org/TR/esi-lang
http://jakarta.apache.org/taglibs/response-1.0

Escenic Content Engine Server Administration Guide

9.8.3.1

9.8.3.2

problem of making the LDAP server scale. Since the Content Engine has only
one LDAP connection (no dedicated read and write connection pools as with
the database), an LDAP master/slave solution is not possible.

Multi Master

This problem can be solved using a multi-master LDAP set-up based on
OpenLDAP (the LDAP server most commonly used together with the Content
Engine). We recommend you use OpenLDAP to set up a multi-master, delta-
synchronised solution.

load balancer with floating IP

multi master sync using deltadb
|:|Dg< »I:IDS
] 111

ldapl Idap2

realdb deltadb realdb deltadb

We recommend that you put a simple TCP load balancer in front of the LDAP
servers: your Content Engines will then address all LDAP-related requests to
this load balancer. We recommend using HA Proxy for this purpose: it scales
well and can queue as many requests as are thrown at it. This set-up can

be scaled "indefinitely" by adding new LDAP servers to the load balancer
configuration.

Optimizing Multi-Master LDAP

The LDAP specification states that replication involves communicating

each node in the entire tree, including those that have not changed. This
means that even a small change will result in a large replication log, slowing
performance. You can get around this problem by adding a second back-end
database called a delta log to each LDAP server. When changes have occurred
on one of the servers, the other servers get their replication data from the
(much smaller) delta log instead of the main database.

Copyright © 2003-2011 Vizrt Page 79

http://openldap.org
http://haproxy.1wt.eu/
http://www.openldap.org/doc/admin24/replication.html

Escenic Content Engine Server Administration Guide

9.8.3.3 Optimising LDAP Back-ends
The most important factor affecting LDAP performance (much more important
than using a multi-master setup) is optimization of the LDAP back-ends. You
should NOT put a large social networking site in production before
you have done this. The performance difference between a vanilla back-end
and an optimized one can easily be a factor of ten.
You will find a good guide to optimizing the BDB and HDB backends at
Zytrax.com.
9.8.3.4 Single Point of Failure
Using a load-balanced multi-server LDAP setup like this means you get
automatic failover between the LDAP servers. However, the load balancer
itself then becomes a single point of failure. You can fix this by implementing a
heart beat solution (see section 9.6).
9.8.4 User Registration
If you expect large numbers of users (say 10 000) to register on your site
within a very short space of time (say 5-10 minutes), then you will need to
establish some kind of queueing mechanism to cope with this.
9.9 How to Test
In order to know whether or not your installation is likely to meet your needs
you need to test it. The following sections provide some advice on testing and
useful test tools. Three kinds of testing are considered:
* Smoke testing (initial tests intended to give you a general idea of how your
set-up is performing)
* Functional testing (does your set-up actually do all the things it's supposed
to do?)
* Load testing (will your set-up function satisfactorily under the maximum
loads you expect your site to experience?)
9.9.1 Smoke Testing

Page 80

A good starting point is to verify that the site is actually delivering content
and to measure how fast it does this over time. You can do this by repeatedly
accessing the site using the wget command and

* Observing the effect on operating system resources using commands such
as top, vmstat and iotop

* Observing how the Content Engine responds using the performance
summary pages in the escenic-admin web application (see section 2.1.3)

wget downloads a requested page with all its linked resources, such as
images, style sheets and Javascript files. You should always call it several
times when you are testing, in order to even out variations in performance.
The time taken to respond to a single request cannot be trusted, since it

Copyright © 2003-2011 Vizrt

http://www.zytrax.com/books/ldap/ch6/bdb.html

Escenic Content Engine Server Administration Guide

may have arrived at an exceptionally good or bad point in time: when the
caches are being filled up, when the connection to the database needs to
be re-established or when Java is performing garbage collection. You should
therefore submit the command in a loop that executes it a number of times,
for example:

$ for i in $(seq 10); do
time \
wget -p \
--delete-after \
-0 /dev/null \
http://mysite.com/
done

You should repeat this test at intervals to see the effect of the changes you
make during tuning.

This command can also be used to fill up the front end caches after they have
been flushed (for instance after a new deployment of your portal software).

9.9.2 Functional testing

We recommend using]Meter for functional tests. You can use it to write scripts
that simulate typical user activities. We do not, however, recommend JMeter
for load testing. It does not put enough strain on an installation to verify that it
can sustain real, high volume traffic.

9.9.3 Load testing

For load testing we recommend two different tools:

* Siege for testing straightforward read operations. Siege is multi-
threaded and can exert enough pressure on your site to quickly reveal its
weaknesses.

Here is an example siege command for starting 100 sessions on an Escenic
Community Expansion site, and creating 50 blogs in each session:

$ $ siege -c 100 \
-r 50 \
-f siegedata-create-blog \

The actual HTTP request sent to the browser is read from a siege data file
(siegedata-create-blog in the example above). These files have a very
simple format, for example:

http://mysite.com/community/addStory.do POST parameterOne=valueOne¶meterTwo=valueTwo...

They can easily be constructed by carrying out an operation in the browser
and then using a debugger such as Firefox's Firebug to capture what is
actually being sent to the server.

» httperf for more testing more complex scenarios involving user input.
httperf allows you to write session scripts that simulate the GET, PUT,
POST and DELETE operations various kinds of user activity would result in.
Furthermore, it can replay your Apache access logs, giving your tests real

Copyright © 2003-2011 Vizrt Page 81

http://jakarta.apache.org/jmeter/
http://www.joedog.org/index/siege-home
http://www.hpl.hp.com/research/linux/httperf/

Escenic Content Engine Server Administration Guide

user traffic patterns as opposed to looping through a list of URLs sorted in
alphabetical order.

Here is an example that shows httperf creating 1000 connections and
submitting 20 requests over each connection, establishing 100 connections
per second:

$ httperf\
--hog \
--server myserver.com \
--num-conn 1000 \
--ra 100 \
--num-calls=20

See the httperf man pages for a detailed explanation of the parameters.

Once you have built up a library of tests, you can create a shell script to
execute them all simultaneously. For example:

#! /usr/bin/env bash
create_blog.siege &
commit poll vote.siege &
login_user.siege &

replay the_access_log.httperf &

Page 82 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

10 Backup

There are three items that need to be backed up in order to have a full backup
of an Escenic installation:

* The database server
e The LDAP server
* Various files in the file system

10.1 Database Server

All publication content other than images and media files are stored in the
database. Database backups should be carried out every day, ideally at a time
of day when little new content is created.

For information on how to carry out and verify database backups, see the
documentation for your particular database server.

Note that if your database server needs to be shut down during backups,
then your publications will be partly inaccessible to users. Partly inaccessible
means:

* No updates will be possible
* Any previously accessed pages that have not been removed from the cache
will be accessible to readers; others pages will not be accessible.

Most database servers do, however, support online backup.

10.2 LDAP Server

The LDAP server stores all information about users and authors, user groups,
permissions and so on. LDAP server backups should be carried out every day.

For information on how to carry out and verify LDAP server backups, see the
documentation for your particular LDAP server.

10.3 File System

The following kinds of file system files need to be backed up:

» Data files

* Content Engine configuration files
* Publication web applications

* Content Engine program files

There are many utilities available, both commercial and open source, for
carrying out file system backups. You can either use one of these or write your
own backup script.

Copyright © 2003-2011 Vizrt Page 83

10.3.1

10.3.2

10.3.3

10.3.4

Page 84

Escenic Content Engine Server Administration Guide

Data Files

The data files that need to be backed up consist of publication images and
media files, which are not stored in the database. The location of these files is
defined by the serverConfig component's filePublicationRoot property.
Use the escenic-admin application's option (see
section 2.1.13) to see this property.

All this folder's sub-folders and files should be backed up. Backups should be
performed on the same schedule as the database, since the files stored here
are closely related to database content.

Content Engine Configuration Files

Depending on your configuration set-up you may have one or more
configuration layer on each server that needs to be backed up. For further
information about configuration layers and their locations, see chapter 4.

You are strongly recommend to keep all your configuration layers in some
kind of version control system, so that you can easily track what changes
have been made and revert to earlier versions if the system should become
unstable after configuration changes. If you do this, then you will not need to
keep backups of these files (but you will, of course need to keep backups of
your version control system repository).

Backups should be performed daily.

Publication Web Applications

The web applications that drive Escenic publications consist of a combination
of template code (JSP files) and various configuration files in the WEB-INF and
META-INF folders, which also need to be backed up. These applications are
deployed on the application server by the Content Engine assembly tool from
a copy in the /opt/escenic/assemblytool/publications folder.

As with the Content Engine configuration files, you are strongly recommend to
keep your publication web applications in a version control system. If you do
this, then you will not need to keep backups of the deployed web applications,
but you will need to keep backups of your version control system repository.

A Simple Backup Script

Here is a very simple script that saves back up copies of a MySQL database
and an Open LDAP user database:

#! /bin/bash
dir=/var/backups/escenic

db backup
mysgldump ecedb | gzip -9 > $dir/$(date --iso)-ecedb.sqgl.gz

ldap backup
slapcat > $dir/$(date --iso)-ece.ldif 2>/dev/null

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

If you save it in /ete/cron.daily/ece, then it will be run every day, creating
daily backups of your databases.

Copyright © 2003-2011 Vizrt Page 85

Escenic Content Engine Server Administration Guide

\V|zrt\

Page 86 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

11 Logging

The Content Engine uses the Apache log4j utility to handle logging. 1og43j
is very flexible: among other things, it allows the logging level to be changed
without restarting the Content Engine.

By default, the Content Engine outputs log messages to System.out, which
means the application server's log file. You can, however, change this (and
many other log settings) by creating a trace.properties file and adding it to
your application server's classpath. An easy way of doing this is:

1. Copy the supplied template trace.properties file from /opt/escenic/
engine/classes to the root folder of your common configuration layer (/
etc/escenic/engine/common).

2. Edit the copied file (see section 11.1).

3. Most application servers have a folder whose contents are automatically
added to the classpath. Create a symbolic link to your trace.properties
file in this folder. If you use Tomcat, for example, you can make sure your
trace.properties is added to the classpath by entering:

$ cd /opt/tomcat/lib/
$ 1ln -s /etc/escenic/engine/common/trace.properties

If you do this, then any changes you make to trace.properties will take
effect the next time you start the application server.

11.1 Editing trace.properties

You can use the trace.properties file to configure all aspects of logging,
including the following:

* Log file location

* Log file rotation

* Log file layout

* Logging levels

* Multiple log file generation

The following sections contain some hints on how to use trace.properties
to achieve certain objectives, but no more than that. For a full description

of all the possibilities offered by 1og4j and the trace.properties file

format (which is complicated), see http://logging.apache.org/log4j/1.2/
manual.html and http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/
PatternLayout.html.

11.2 Log File Rotation

An application server can generate large numbers of log messages, so if no
action is taken, log files can grow unmanageably large. Log file rotation

Copyright © 2003-2011 Vizrt Page 87

http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Escenic Content Engine Server Administration Guide

solves this problem by starting a new log file at fixed intervals. You can either
use a third party log rotation program or else set up trace.properties S0
that the Content Engine starts logging to a new file periodically. You can define
the period between log files either by time (every 24 hours, for example) or by
data volume (every x kilobytes).

You can, for example, change the log file once a day by replacing this line in
the default trace.properties:

log4]j.appender.FILE=org.apache.log4j.FileAppender

with this:

log4j.appender.FILE=org.apache.log4j.DailyRollingFileAppender
log4j.appender.FILE.DatePattern="'."'yyyy-MM-dd

11.3 Logging Level

Logging level determines how many messages the Content Engine outputs

to the log file. For general information about this, see section 2.1.16.

Logging level can be set in three different places:

1. Inthe trace.properties file. General, permanent logging level settings
should be made here.

2. In the configuration layers. You can set special logging level settings for a
particular component in that component's .properties file. Any settings
made here will override the general settings in trace.properties and
are permanent. For general information about configuration layers, see
chapter 4.

3. Using the escenic-admin application's option
(see section 2.1.16). Any settings made here will override settings made
in trace.properties and settings made in the configuration layers.

The settings are, however, only temporary: they will disappear when the
Content Engine is restarted.

In a production environment you are recommended to set the general logging

level to ERROR.

11.4 Example Logging Set-up

Page 88

You can use the following example trace.properties file as a basis for your
own logging configuration. Replace mycompany and MYCOMPANYLOG with
suitable names of your own.

log4j.rootCategory=ERROR
log4j.category.com.escenic=ERROR, ECELOG
log4j.category.neo=ERROR, ECELOG
log4j.category.com.mycompany=ERROR, MYCOMPANYLOG

log4j.appender.ECELOG=0rg.apache.log4j.DailyRollingFileAppender
log4j.appender.ECELOG.File=/var/log/escenic/ece-messages.log
log4j.appender.ECELOG. layout=org.apache.log4j.PatternLayout
log4j.appender.ECELOG. layout.ConversionPattern=%d %5p [%t] %x (%c) %m%n

log4j.appender.MYCOMPANYLOG=org.apache.log4j.DailyRollingFileAppender

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

log4j.appender.MYCOMPANYLOG.File=/var/log/escenic/mycompany-messages.log
log4j.appender.MYCOMPANYLOG. layout=org.apache.log4]j.PatternLayout
log4j.appender.MYCOMPANYLOG. layout.ConversionPattern=%d %5p [%t] %x (%c) %m%n

11.5 Changing the Name of trace.properties
If you want to, you can change the name of the logging configuration file
by specifying the system property log4j.configuration. If you specify the
property:
log4j.configuration=myserver-log4j.properties
then the Content Engine will look for its logging configuration in a file called
myserver-log4j.properties. This can be a useful means of changing the
logging configuration for different contexts (development, test, production, for
example).

11.6 Content Studio Thread Dumps

Occasionally, a situation can arise which causes Content Studio to freeze.

If this situation arises, Content Studio will generate a thread dump as a
diagnostic aid. If your users experience this kind of problem with Content
Studio, you will probably be asked to submit one of these thread dump files to
Vizrt support.

By default, Content Studio checks the event dispatch thread every 15
seconds. If the event dispatch thread is busy twice in succession, then a
thread dump file called Escenic-Content-Studio-thread-dump.log isS
generated. It is written to the location defined by the java.io. tmpdir system
property (as defined on the machine where Content Studio is running).

You can change interval between checks by setting the
property.com.escenic.studio. thread.dump. interval property in the
configuration-layer-root/com/escenic/webstart/StudioConfig.properties
configuration file. Specify the required interval in seconds (as an integer).

You can disable this process by setting
property.com.escenic.studio. thread.dump.interval to -1.

Copyright © 2003-2011 Vizrt Page 89

Escenic Content Engine Server Administration Guide

\V|zrt\

Page 90 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

12 Monitoring

The escenic-admin web application contains a number of functions for
monitoring various aspects of Content Engine performance:

. (see section 2.1.3)
. (see section 2.1.4)
. (see section 2.1.7)

The Content Engine also provides support for monitoring via the Java
Monitoring and Management Console.

In addition, all the Content Engine's cache components are now JMX-enabled
(JMX stands for Java Management Extensions). This means that you can
use any JMX client (such as jconsole, the Java Monitoring and Management
Console bundled with the Java runtime) to monitor cache activity.

If you use the /usr/local/bin/ece script to start and stop the Content Engine
(recommended, see Escenic Content Engine Installation Guide, section
3.19), then you can enable and configure JMX support by setting the following
parameters in /etc/escenic/engine/ece.conf:

enable remote monitoring
Set to 1 to enable JMX.

remote monitoring port
Specify the number of the port you want to use for monitoring the
Content Engine.

If you do not use the /usr/local/bin/ece script, then you should set the
corresponding Java system parameters (com. sun.management. jmxremote and
com. sun.management . jmxremote.port). On Java 6 JMX is enabled by default,
SO com. sun.management. jmxremote Can be omitted.

When you run the JMX client you will need to enter the name or IP address
of the host on which the Content Engine is running and the number of the
remote monitoring port you are using. If you use jconsole, then you will find
two Content Engine-related namespaces on the tab:

com.escenic.cache
This contains attributes and statistics for all Content Engine caches.

com.escenic. jvm
This contains Content Engine-related JVM statistics.

Copyright © 2003-2011 Vizrt Page 91

Escenic Content Engine Server Administration Guide

\V|zrt\

Page 92 Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

13 System Properties

The Content Engine will use the system properties described below if they are
specified.

The general method of setting system properties depends on which
application server you use. Some application servers allow you to set

them as -D options in the application server startup command, some read
configuration files, some let you set system properties from an administration
user interface. Consult the documentation for your application server to find
out the best way to set system properties.

Some system properties are set by the Content Engine's ece start-

up script, so if you use this script to start the Content Engine, then

you can also modify the settings of these properties by editing /etc/
escenic/engine/ece.conf. You should avoid setting system properties
in both places, since which setting will take precedence in such cases is
application server-dependent.

The following descriptions indicate which system properties are set by the
ece start-up script.

There are sensible defaults for all system properties, so they do not
necessarily need to be explicitly set.

java.security.policy
Overrides the default java security configuration. Value: [some location
of your choice]/java.policy. The file java.policy should be copied
to the file system of the application server from ECE_CONFIG/security/

java.security.auth.login.config
Overrides the default java security configuration. Value: [some location
of your choice]/jaas.config. The file jaas.config should be copied
to the file system of the application server from ECE_CONFIG/security/

For WebLogic installations, use [some location of your choice]/
jaas-weblogic.config. The file jaas-weblogic.config should be
copied to the file system of the application server from ECE_CONFIG/
security/

com.escenic.instance
The property com.escenic.instance will automatically have the
value of the name of the host that the instance runs on if both
escenic.server and com.escenic.instance are left unspecified. Set
this property if you want it to a have a different value than the host
name. One scenario that requires this property to be set is when you
are running two application server instances on the same host. Its value
should only consist of only letters, numbers, dots and hyphens.

Copyright © 2003-2011 Vizrt Page 93

Page 94

Escenic Content Engine Server Administration Guide

The property com.escenic.instance used to be the escenic.server
property. The property escenic. server still works but it is
deprecated. Content Engine will ensure that escenic.server and
com.escenic.instance have the same value. If both are set by your
configuration, Content Engine will ignore escenic.server and assign
your value of com.escenic.instance to the escenic.server property.

com.escenic.instance.class

The property com.escenic.instance.class defaults to the basename of
the the EAR file at assembly time. Usually, this is "engine" since the EAR
file name is engine.ear. The name is taken from the server class of the
EAR file.

If you copy the default.properties (which describes the default
engine.ear) and have more than one server class it will be possible to
use the name of your server class in your configuration files using the
${com.escenic.server.class} syntax.

Assembly tool will create one ear file for every property file that it
finds in the serverclasses directory. Each of these will run with
com.escenic.instance.class property set to the ear file name.

Only set up this property if you want it to a have a different value than
the ear filename (the server class name). It should only consist of letters,
numbers, dots and hyphens.

Copyright © 2003-2011 Vizrt

Escenic Content Engine Server Administration Guide

14 Content Studio Setup

This chapter contains information about various issues related to the set-up of
Content Studio.

14.1 Language and Country Settings

By default, Content Studio uses the language and country settings of the client
machine's operating system if possible. If this is not possible (because the
required language files are not available), then it uses English language and
country settings by default.

You can force Content Studio to ignore the operating system settings and use
a specified language by adding the following properties to configuration-layer-
root/com/scenic/webstart/StudioConfig.properties:

property.language
The 2-letter ISO language code of the required language (for example,
en, no or de). This setting determines the language in which all Content
Studio menu items, labels and messages are displayed. If you specify a
language code for which no text files are available, then English will be
used by default.

property.country
The 2-letter ISO country code of the required country (for example, us,
NO or DE). This setting determines the formats and conventions used for
displaying such things as decimal numbers, dates and so on.

In addition, it is possible for Content Studio users to override the default
behavior and any settings in StudioConfig.properties by supplying
parameters in the Content Studio URL. The default Content Studio start-up link
has the following URL:

http://host:8080/studio/studio.jnlp

where host is the host name or IP address of the Content Engine host. A user
can force Content Studio to be run in German, for example, by entering the
following URL in the browser address field instead of just clicking on the start-
up link:

http://host:8080/studio/studio.jnlp?language=de&country=DE

Text files for the following languages are currently supplied with Content
Studio:

* English
e German

Copyright © 2003-2011 Vizrt Page 95

Escenic Content Engine Server Administration Guide

14.2

Page 96

Spelling Dictionaries

Spelling dictionaries for the following languages are supplied with Escenic
Content Studio:

* English
* German
* Spanish
e French

You can however, add dictionaries for other languages (including right-to-left
languages such as Arabic).

Content Studio uses a third-party spelling checker created for an XML
editor called XmIMind. This product requires dictionaries to be compiled
into a proprietary format, so in order to create a dictionary for Content
Studio you must first download a (free) dictionary compiler from http://
www.xmlmind.com/dictbuilder.shtml.

dictbuilder is a Java program. Supplied with it are a shell script and .BAT file
so that it can be used as a command line utility on any standard operating
system. Full documentation is also available at the above location.

Once you have downloaded and installed dictbuilder, the basic procedure
for adding a dictionary to Content Studio is:

1. Obtain one or more plain text word lists from which a dictionary can be
generated. If you use more than one word list, they must be in the same
encoding.

2. Obtain or create a hints file: this is a text file containing optimization
rules for the target language. Ready-made hints files are provided for
a number of languages in the dictbuilder download package. If there
is no hints file in the package for your target language, then you will
need to create one. In order to create a good hints file you need detailed
knowledge of the target language. For further information, see http://
www.xmlmind.com/ dictbuilder/doc/hints file.html.

3. Optionally, obtain or create a freq file (a list of frequently-used words)
and a prefixes file (a list of allowed prefixes). Again, these are provided
for some languages in the dictbuilder download package, otherwise you
can make them yourself if you have sufficient knowledge of the target
language.

4. Generate a dictionary using dictbuilder. For further information, see
http://www.xmlmind.com/ dictbuilder/doc/using builder.html.
This produces a .cdi output file.

5. Optionally package the .cdi file in a .dar archive. For further
information, see http: //www.xmlmind.com/_ dictbuilder/doc/
storage of dicts.html.

6. Upload the .cdi file or .dar archive to a web server somewhere in your
network.

7. Create a text file and enter the URL of the dictionary (.cdi file or .dar
archive) you have uploaded. If you have created several dictionaries, then

Copyright © 2003-2011 Vizrt

http://www.xmlmind.com/dictbuilder.shtml
http://www.xmlmind.com/dictbuilder.shtml
http://www.xmlmind.com/_dictbuilder/doc/hints_file.html
http://www.xmlmind.com/_dictbuilder/doc/hints_file.html
http://www.xmlmind.com/_dictbuilder/doc/using_builder.html
http://www.xmlmind.com/_dictbuilder/doc/storage_of_dicts.html
http://www.xmlmind.com/_dictbuilder/doc/storage_of_dicts.html

Escenic Content Engine Server Administration Guide

you should add the URLs of all your dictionaries to this file, each on a
separate line.

8. Upload this text file to a web server somewhere in your network.

9. Edit your configuration-layer-root/com/escenic/webstart/
StudioConfig.properties file. Add a new property called
com.escenic.xmlmind.dictionary.list.url, and set its value to the
URL of the dictionary list file that you uploaded in step 7.

Once this has been done, the new dictionaries you have added should be
available from any Content Studio instances launched via WebStart.

If , for example, you created dictionaries for Norwegian and Swedish (no.cdi
and se.cdi) and uploaded them to http://www.my-domain.com/static/
dictionaries, then you would need to create a file (lets call it dictionary-
list.txt) with the following content:

http://www.my-domain.com/static/dictionaries/no.cdi
http://www.my-domain.com/static/dictionaries/se.cdi

If you uploaded this file to the same location, then you would need to add the
following property to your configuration-layer-root/com/scenic/webstart/
StudioConfig.properties file:

com.escenic.xmlmind.dictionary.list.url=http://www.my-domain.com/static/dictionaries/dictionary-
list.txt

14.2.1 Dictionary Sources

There are a number of free/open source spelling checkers available, many of
which have associated word lists for a wide range of languages. These word
lists are in most cases themselves open source, and can therefore be freely
used (although there may be restrictions on redistribution). They may need to
be decompiled from their native format before they can be used as input to
dictbuilder.

Two of the most commonly used spelling checkers are ispell and aspell.
Dictionaries created for these two systems cover a wide range of languages.

In addition, ready-converted XmIMind dictionaries for a number of
languages can be downloaded from http://www.xmlImind.com/spellchecker/
user_contrib_dicts.html.

14.2.1.1 Converting Ispell Dictionaries

The dictbuilder documentation includes instructions on how to use
dictionaries made for ispell (a popular open source spelling checker) here:
http://www.xmlmind.com/ dictbuilder/doc/from_ispell.html.

14.2.1.2 Converting Aspell Dictionaries

Here is an example of how to create an XmIMind dictionary from an aspell
dictionary (in this case Greek, which has the ISO language code el). To do this
you need to install aspell on your computer as well as dictbuilder. aspell

Copyright © 2003-2011 Vizrt Page 97

http://www.xmlmind.com/spellchecker/user_contrib_dicts.html
http://www.xmlmind.com/spellchecker/user_contrib_dicts.html
http://www.xmlmind.com/_dictbuilder/doc/from_ispell.html

Escenic Content Engine Server Administration Guide

is available for both Windows and Unix-based platforms. The dictbuilder
package includes a hints and a freq file for Greek.

1. Export the aspell word list:

$ aspell --encoding IS0-8859-7 -1 el dump master > greek.txt

Note that you need to ensure that the encoding of the exported word list
is the same as any hints, freq and prefixes files you are going to use.

2. Convert the exported word list with dictbuilder:

$ dictbuilder -cs IS0-8859-7 -hints el.hints -freq el.freq greek.txt -o el.cdi
3. Upload el.cdi to your web server.

Create a dictionary-list. txt file containing the URI of el.cdi (plus the
URIs of any other dictionaries you have uploaded). For example:

http://www.my-domain.com/static/dictionaries/el.cdi

5. Upload dictionary-list. txt to the same location.

Add the following property to your configuration-layer-root/com/scenic/
webstart/StudioConfig.properties file:

com.escenic.xmlmind.dictionary.list.url=http://www.my-domain.com/static/dictionaries/
dictionary-list.txt

14.3

Page 98

Memory Settings

You can change the Java memory settings used to run Content Studio on the
client by modifying the vmargs property in configuration-layer-root/com/
scenic/webstart/StudioConfig.properties. The default setting for this
property is:

vmargs=-Xms1l28m -Xmx256m

These settings may, however, be too low for users who need to be able to edit
large images. To find out the approximate maximum image size that can be
edited in Content Studio, divide the -xmx value by 30. The default setting, in
other words, will allow users to edit images of up to about 8.5 mega pixels

in size. If this is insufficient, increase the -xmx value as required. A vmargs
setting of:

vmargs=-Xms128m -Xmx512m

for example, will enable users to edit images of up to about 17 mega pixels in
size.

Copyright © 2003-2011 Vizrt

