
Escenic Content Engine

Server Administration Guide
5.6.13.183224

Table of Contents

1 Introduction.. 6

2 The escenic-admin Web Application... 8

2.1 Home.. 8

2.1.1 Status...9

2.1.2 Configuration Layer Report... 9

2.1.3 View Installed Plugins... 10

2.1.4 Performance Summary..10

2.1.5 System Properties... 12

2.1.6 View Services..12

2.1.7 Issue a Support Request.. 12

2.1.8 Create a Thread Dump... 13

2.1.9 Top...13

2.1.10 View the Browser Log... 13

2.1.11 Configure Logging Levels..13

2.1.12 View JSP Statistics... 15

2.1.13 Remove Objects From Cache...15

2.1.14 Clear All Caches... 15

2.1.15 Component Browser..15

2.1.16 Database Browser... 17

2.2 List publications.. 17

2.2.1 Update Resources...18

2.3 New publications...19

2.4 Publication tools..20

2.4.1 Manage Tag Structures...20

2.4.2 Grant a User Read/Write Permission..24

2.4.3 Export Publication Content..24

2.4.4 Resolve Unresolved Relations.. 25

2.5 Upload Resources.. 25

3 The indexer-webapp Web Application...27

3.1 Configuration...27

3.2 Current State.. 28

3.3 Current Statistics.. 28

3.4 Indexer Actions...28

4 Configuring The Content Engine... 30

4.1 Configuration Layers...30

4.2 Configuration File Format...31

4.3 Managing The Configuration Layers.. 34

4.3.1 Create The Common Configuration Layer.. 34

4.3.2 Add A Host Configuration Layer... 34

4.3.3 Add A Family Configuration Layer.. 35

4.3.4 Add Further Layers... 36

4.3.5 Change The Location of a Layer.. 36

5 Search Engine Configuration and Management... 38

5.1 The Standard Configurations..38

5.2 Modifying The Standard Configuration...40

5.2.1 Using the Right Indexer Web Service...40

5.2.2 Customizing the Index Schema.. 40

5.2.3 Isolating The Search Engine...41

5.3 Re-indexing...44

6 Caching.. 46

6.1 Flushing Caches...46

6.2 Tuning The Object Caches.. 46

6.2.1 Global Caches...48

6.2.2 Web Application Caches... 51

6.3 Distributed Caching.. 53

6.3.1 DatabaseEventManager Service...53

7 Bootstrapping... 55

7.1 InitialBootstrapper... 55

8 Throttling.. 57

8.1 ResourceThrottle.. 58

8.2 Per-Publication Throttling... 58

9 Performance...60

9.1 Scalability..61

9.2 Web Server Set-up...61

9.2.1 Web Server Tuning... 61

9.2.2 Why You Need a Web Server.. 62

9.3 Database Performance...63

9.3.1 Identifying Slow Transactions..63

9.3.2 Troubleshooting Slow Transactions.. 64

9.3.3 Getting the Database to Scale..64

9.4 The TCP/IP Stack...65

9.4.1 Caching Servers.. 65

9.5 Searching with Solr.. 66

9.6 Avoiding Single Points of Failure... 66

9.7 Optimizing the Operating System Kernel... 67

9.8 Highly Interactive Sites...67

9.8.1 Session Binding...68

9.8.2 Edge Side Includes... 68

9.8.3 User Registration...68

9.9 How to Test.. 69

9.9.1 Smoke Testing...69

9.9.2 Functional testing.. 69

9.9.3 Load testing...69

10 Backup... 71

10.1 Database Server...71

10.2 File System...71

10.2.1 Data Files.. 71

10.2.2 Content Engine Configuration Files...72

10.2.3 Publication Web Applications.. 72

10.2.4 A Simple Backup Script.. 72

11 Logging.. 73

11.1 Editing trace.properties...73

11.2 Log File Rotation.. 73

11.3 Logging Level... 74

11.4 Example Logging Set-up.. 74

11.5 Changing the Name of trace.properties... 75

11.6 Content Studio Thread Dumps...75

12 Monitoring.. 76

13 System Properties..77

14 Content Studio Setup.. 79

14.1 Language and Country Settings...79

14.1.1 Translating Content Studio..79

14.2 Spelling Dictionaries... 81

14.2.1 Dictionary Sources.. 83

14.3 Memory Settings...84

14.3.1 Size Restrictions in Image Editor.. 84

14.4 Default Sort Order.. 84

14.5 MIME Type Mappings.. 85

14.6 Varnish and Content Studio File Uploads.. 85

15 Active Directory-Based Authentication.. 86

15.1 Enabling Connection to Active Directory..86

15.2 Switching to Active Directory..87

15.2.1 Setting a Default Domain.. 88

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 6

1 Introduction

This Server Administration Guide is intended to be read by the system administrator responsible
for managing the server or servers on which an Escenic Content Engine and its supporting SW
components are installed. It covers the periodic administration tasks a system administrator needs to
carry out once the Content Engine is installed and in operation. It does not describe how to install and
deploy the Content Engine: for installation and deployment instructions, see the Escenic Content
Engine Installation Guide.

Both this manual and the Escenic Content Engine Installation Guide make the following
assumptions about the Escenic installation and you, the reader:

• The Content Engine and the supporting software stack (database, web server, application server
and so on) are installed one one or more UNIX or Linux servers, not on Windows.

• You are a suitably qualified system administrator with a working knowledge of both the operating
system on which the Content Engine is installed and of the components in the supporting software
stack.

All shell command examples given in the manual are tested on Debian Linux servers: they may need
minor modifications to be used on other Linux or UNIX platforms, and it is assumed that you are
able to make the necessary "conversions" to your own platform. Some of the commands should be
executed as the owner of the Escenic installation. This is signalled by use of the $ command prompt.
For example:

$ ls

Other commands must be executed as root. This is signalled by the use of the # command prompt:

/etc/init.d/slapd restart

Two different kinds of installation are discussed in this manual:

• Single server installations, in which the Content Engine and the entire supporting SW stack are
installed on a single machine.

• Multi-server installations. There are many possible multi-server configurations, but only one is
described here. It is assumed that you are competent to extrapolate from the description of this
configuration to your particular variant.

All file paths and URLs shown in the manual are based on the following standard folder structure:

Standard location Component

/opt/escenic Escenic

/opt/escenic/engine Escenic Content Engine

/opt/escenic/assemblytool Escenic assembly tool

/etc/escenic Escenic configuration

/etc/escenic/engine Escenic Content Engine configuration

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 7

Standard location Component

/opt/java/jdk Java

/opt/java/ant Ant

/opt/tomcat Tomcat

If your system is organized differently, then adjust the paths you use accordingly.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 8

2 The escenic-admin Web Application

An administration web application called escenic-admin is included with the Escenic Content
Engine. It provides access to various administration-related tools. This chapter contains a full
description of escenic-admin and how to use it. It describes how you can use the application to carry
out various tasks, but does not in general discuss the purpose of the tasks: this is covered either in the
later chapters of this manual or in the Escenic Content Engine Installation Guide.

When the Content Engine is running, you can access escenic-admin by starting a browser and
pointing it at:

http://your-server:8080/escenic-admin/

where your-server is the domain name or IP address of the server on which the Content Engine is
running.

This should display the following page:

The menu on the left switches the display between four main pages, Home, List publications, New
publications and Publication tools. These pages are described in the following sections.

2.1 Home
This page contains a long list of links that provide access to various system administration tools and
services, described in the following sections.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 9

2.1.1 Status

This option displays the Content Engine status page, which looks something like this:

This page displays the results of various sanity checks performed to determine the status of the
Content Engine and is a useful diagnostics tool, particularly during the initial installation and
configuration phase. The test results are grouped into seven different categories (System Properties,
Security settings, Classpath, Configuration Layers, Database and Network Parameters),
displayed in a menu across the top of the screen.

The result of each of the tests displayed on these pages is indicated by one of the following icons:

The test was passed, no action needed.

The test was not passed but the failure is not critical. Click on the help link for information
about the consequences of the failure and how to fix the problem (if necessary).

The test was not passed and the failure is critical (that is, the Content Engine will not
function properly until the problem is fixed). Click on the help link for information about the
consequences of the failure and how to fix the problem.

For each test there is a help link on the right hand side of the window that displays information about
the test: what the test does, what the consequences of failure are and advice on fixing failures.

2.1.2 Configuration Layer Report

This option displays a page that shows the settings of the Content Engine's mandatory configuration
parameters. In the same way as the Home > Status page, it indicates whether each parameter is
correctly set and provides help links with background information about each setting.

The Content Engine has many more configuration parameters than the ones shown here: to see the
settings of other parameters, use the Home > Component Browser option (see section 2.1.15).

The Content Engine has a layered configuration system that allows more specific configuration
parameter settings (for example, host-specific settings) to override more generic (for example,
installation-wide) ones. It is therefore not always immediately obvious where a particular parameter
setting originates from, or where the best place to modify it is. To be a successful Escenic server
administrator you need to understand this configuration system. It is described in chapter 4.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 10

2.1.3 View Installed Plugins

This option displays a list showing the status of all the plug-ins currently installed with the Content
Engine. Here is an example of a plug-in status listing, in this case for the menu editor plug-in:

The green check mark indicates that the plug-in is correctly installed. Badly installed plug-ins are

marked with a icon instead.

2.1.4 Performance Summary

This option displays a page of Content Engine performance data.

At the top of the page are controls for determining how the page is refreshed:

Refresh
This button refreshes the page now. It can be used at any time, but will normally only be used
when the Auto Refresh option is disabled.

Auto Refresh
Check this option if you want the page to be automatically refreshed every 2.5 seconds. If this
option is not checked them the page is only refreshed on request.

The contents of the Performance Summary page is divided into separate sections for each of the
applications running on the application server: one section (called Global) for the Content Engine
itself, and one for each related application (including publication applications). The Global section
contains Cache, Load Averages and Activity Monitors information. The other sections usually
only contain Cache information.

2.1.4.1 Cache Summaries

A cache summary has the following columns:

Component Name
The name of the component that manages the cache. The name is also a link to the component's
component browser page, where you can tweak the cache settings. For information about the
component browser, see section 2.1.15. For advice on cache tuning, see chapter 6. Note that any
changes you make to cache settings using the component browser are temporary and will be lost
the next time the Content Engine is restarted. To make permanent changes to a cache's settings
you must edit a .properties file in one of your configuration layers (see chapter 4).

Size
The maximum number of entries allowed in the cache.

Adds
The number of entries added to the cache since the last restart.

Hits
The number of hits (successful cache look-ups) since the last restart.

Misses
The number of misses (unsuccessful cache look-ups) since the last restart.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 11

Idle
The average time taken for an idle object to pass through the cache, in milliseconds.

Cache Health
A general indicator of how well the cache is performing. The vertical bar shows what proportion
of the items in the cache are popular (popular items are ones which keep being requested and
therefore stay in the cache for a long time). The green area in the center of the graph indicates
the "healthy" area, and the vertical bar should mostly appear within this area. If the indicator is
to the left of the green area, then almost all of the objects in the cache are popular. This suggests
that the cache may be too small, and there are even more popular objects that cannot be kept in
the cache because it keeps filling up. If the indicator is to the right of the green area, then very
few of the objects in the cache are popular, suggesting that the cache is larger than it needs to be.

Note that you should not make changes to a cache's size based on a single reading of this
indicator. You need to observe the indicator over time, and only make an adjustment if the
indicator is consistently outside the healthy area.

LRU Distribution
This graph shows the distribution of items in the cache the last time the cache was full and
needed emptying. Each bar represents a level of popularity, so the first bar indicates how many
items were very popular (frequently requested), and the last bar shows how many objects were
very unpopular. A well-functioning cache should have most items at the left hand (popular)
end. If the distribution seems to be completely even it may mean that the cache is too small or
too large. Consult Cache Health for further guidance, Idle to see whether or not the cache is
retaining items for a sensible amount of time, and Adds to make sure that items are not moving
through the cache too fast.

Popularity Distribution
This graph shows the relative popularity of the items in the cache the last time the cache was
full and needed emptying. Popular (recently requested) items are shown at the left hand end,
unpopular ones at the right hand end. A well-functioning cache should have most items at the
left hand (popular) end.

Live hit rate
This shows the percentage hit rate of the cache since the last time the Performance
Summary page was updated. In other words, if Auto Refresh is switched on, it shows the
hit rate over the preceding 2.5 seconds. If Auto Refresh is switched off then when you click
Refresh, it shows the hit rate since the previous time you clicked Refresh.

2.1.4.2 Load Averages

The load averages table shows information about the load on various parts of the Content Engine. The
table contains the following columns:

Component Name
The name of the component that monitors this part of the Content Engine. The name is also a
link to the component's component browser page, where you may possibly find more detailed
information than is displayed in the load averages table.

Success
The number of successful requests handled by this part of the Content Engine since the last
restart.

Failures
The number of failed requests handled by this part of the Content Engine since the last restart.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 12

Time
The amount of time spent in this part of the Content Engine since the last restart.

Load average
A graph showing the average load exerted on this part of the Content Engine over the
last minute or so (assuming Auto Refresh is switched on - otherwise the length of time
represented by the graph will depend on how frequently you have clicked on the Refresh
button).

Description
The part of the Content Engine monitored by this component.

2.1.4.3 Activity Monitors

The activity monitors table shows information about the throttles used to limit the load on various
parts of the Content Engine. The table contains the following columns:

Component Name
The name of the component that controls this throttle. The name is also a link to the
component's component browser page, where you can adjust the throttle settings if necessary.
For information about the component browser, see section 2.1.15. For advice on throttle
tuning, see chapter 8. Note that any changes you make to throttle settings using the component
browser are temporary and will be lost the next time the Content Engine is restarted. To make
permanent changes to a throttle's settings you must edit a .properties file in one of your
configuration layers (see chapter 4).

Current usage
The number of requests currently being handled by this part of the Content Engine.

Limit
The maximum number of concurrent requests allowed by the this throttle.

Description
The part of the Content Engine controlled by this throttle.

2.1.5 System Properties

This option displays a list of system-wide property settings.

2.1.6 View Services

This option displays a status page showing the current status of various services that the Content
Engine depends on. On the right hand side of the page are various check boxes that you can use to
control the information displayed on the page.

2.1.7 Issue a Support Request

Whenever you send a support request to Escenic, you should include full information about your
current server setup. The simplest way to do this is to:

1. Select this option.

2. Copy the information listed on the displayed page.

3. Paste the information into the body of a mail.

4. Send the mail to support.online@vizrt.com.

mailto:support.online@vizrt.com

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 13

In some browsers you can create the mail automatically by clicking on the send all this as an e-mail
link on the displayed page.

2.1.8 Create a Thread Dump

Displays a page content a thread dump from the server. You may in some circumstances be asked to
supply a thread dump in connection with a support request. Simply copy the contents of this page and
send it in a mail to support.

2.1.9 Top

This option displays a constantly updated list of the most active JSP templates. The list shows the
amount of time spent in each listed JSP file during the preceding two seconds. It can be a useful tool
for identifying bottlenecks in your JSP code.

2.1.10 View the Browser Log

This option displays the messages generated by Escenic templates. The messages displayed can come
from two possible sources:

• Escenic tag library tags

• Template code. Template developers can explicitly include log messages in their templates using
the util:logMessage tag.

Log messages are classified into various error level categories (ERROR, WARNING and so on). You can
select which of these levels are to be displayed here using the View the logging levels option (see
section 2.1.11).

2.1.11 Configure Logging Levels

This option display the Escenic logging level editor, which you can use to control what kinds of
messages are added to the browser log (see section 2.1.10). All messages have two properties that are
used by the logging level editor:

category
This is a string that identifies the source of the message. If the source is a Java program (which
is usually the case), the string is the fully qualified class name of the class that issued the
message (com.escenic.presentation.servlet.BootstrapFilter, for example).
Messages generated by template code, on the other hand, have category strings defined by the
template developer: template developers are recommended to follow a similar "dotted" naming
convention.

level
This is a keyword denoting the severity of the condition that caused the message to be issued.
The severity levels (from highest to lowest) are:

FATAL
indicates that a fatal error has occurred.

ERROR
indicates that a non-fatal error has occurred.

WARN
indicates that a possibly undesirable event has occurred.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 14

INFO
indicates that a event of possible interest has occurred.

DEBUG
indicates that an event of possible significance in a debugging situation has occurred.

TRACE
indicates that a traceable event has occurred.

The logging level editor lets you use these two message properties to control what
messages are appended to the browser log. Messages are selected by assigning levels
to categories. All messages belonging to that category that have the assigned level or
higher will then be appended to the log. Assigning the level ERROR to the category
com.escenic.presentation.servlet.BootstrapFilter, for example, will cause any
com.escenic.presentation.servlet.BootstrapFilter messages with the level ERROR or
FATAL to be appended to the log.

Instead of assigning one of the above level settings to
com.escenic.presentation.servlet.BootstrapFilter, you can instead set the level to
INHERIT. It will then inherit whatever level is set for com.escenic.presentation.servlet; if
com.escenic.presentation.servlet is also set to INHERIT, then it will inherit whatever is set
for com.escenic.presentation and so on. This means it is possible to set a general level for all
messages by setting the level of the special category root, and then just set any exceptions as required.

2.1.11.1 Changing Logging Level

To change the setting of one of the categories listed in the editor, simply select the required logging
level from the pull-down list on the right and click on Apply changes.

To change the setting of a category that is not listed in the editor:

1. Check Show inherited categories.

2. Click on Apply changes. This will cause all currently registered categories to be displayed,
including all those have their level set to INHERIT.

3. Locate the required category and select the required level.

4. Un-check Show inherited categories.

5. Click on Apply changes. You will see that the category is now listed in the editor, because it has
an explicit setting.

2.1.11.2 Adding Categories

Any categories defined in template code will not appear in the logging level editor, even when Show
inherited categories is checked, unless they are explicitly added. To add a new category:

1. Enter the name of the new category in the Enter new category field.

2. Click on Apply changes.

The new category will initially be listed with its level set to INFO.

If template developers use the same "dotted" naming convention for their messages as is used for
Content Engine messages, then the same inheritance rules are applied by the error logging system.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 15

2.1.11.3 Filtering The Category List

If you check Show inherited categories, then the list of categories can be very long. You can limit
the list to show only the categories you are interested in using the Filter Categories field. You can,
for example, display only com categories by entering com in the Filter Categories field and then
clicking on Apply changes.

2.1.12 View JSP Statistics

This option displays JSP-related performance statistics, and is mostly likely to be used by template
developers rather than by system administrators. Statistics are only displayed if statistics gathering (or
profiling) has been enabled in publication templates. For information about statistics collection and
interpretation, see Escenic Content Engine Advanced Developer Guide, chapter 4.

2.1.13 Remove Objects From Cache

This option allows you to clear specific objects from specific caches (which can be useful for
locating cache-related problems. You are recommended to use this option rather than the Clear all
caches option (see section 2.1.14) if possible, as Clear all caches can have a significant effect on
performance.

To use this option:

1. Select the type of object to be removed from the caches.

2. Select the caches from which the selected objects are to be removed.

3. Either:

• Enter an SQL query that will return the IDs of the objects to be removed, or

• Enter the IDs of the objects to be removed.

4. Click Preview. The selected object IDs displayed for confirmation.

5. If you are satisfied with the displayed object IDs, click Confirm.

2.1.14 Clear All Caches

This option empties all the Content Engine's caches.

This option can have a significant effect on performance. You are advised to avoid using it on live
systems. If possible, use the Remove some objects from cache option instead (see section
2.1.13).

2.1.15 Component Browser

This option displays the Escenic component browser. The component browser is a web application
that you can use to:

• View current configuration parameter settings of the Content Engine, its associated web
applications and publications.

• Find out where the current configuration parameter settings come from (that is, which particular
configuration files they are set in).

• Temporarily modify configuration parameter settings.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 16

Content Engine components are uniquely identified by fully qualified names consisting of a path and a
name. The Content Engine's article list cache component, for example, has the following fully qualified
name: /neo/io/content/cache/ArticleListCache. The components, in other words, are
effectively organized in a tree structure. The component browser lets you navigate this tree structure
and view the properties of Content Engine components.

To view the properties of the ArticleListCache component, for example, you would need to
click on Component browser > neo > io > content > cache > ArticleListCache. A page of
information about the ArticleListCache component is then displayed. It is divided into three
sections: Properties, Methods and Service Information.

2.1.15.1 Properties

The properties section of a component browser page lists the current property settings of a component.

To change the setting of a displayed property:

1. Click on the property name. A new page is displayed, possibly containing a New Value field.

2. Enter a new value in the New Value field (if displayed).

3. Click on Submit Query.

• Not all properties are editable. If a property cannot be edited, then no New Value field is
displayed when you click on the property name.

• Changes you make in this way are temporary and will be reverted the next time the server is
restarted.

• Be careful! Don't change property settings on a live system unless you are sure you know what
you are doing.

2.1.15.2 Methods

The methods sections of a component browser page lists the component's methods.

To execute a displayed method:

1. Click on the method name. A new page is displayed that contains a button or Invoke link for
invoking the method, and may also contain fields in which you can enter method parameters.

2. Enter any required parameter values.

3. Click on the invocation button or link.

• Changes you make in this way are temporary and will be reverted the next time the server is
restarted.

• Be careful! Don't execute methods on a live system unless you are sure you know what you are
doing.

2.1.15.3 Service Information

Component properties are set during system start-up: the Content Engine reads them from
.properties files. These files are named in the same way as the components they configure.
The properties of the /neo/io/content/cache/ArticleListCache component for
example, are loaded from files called configuration-root/neo/io/content/cache/
ArticleListCache.properties that contain appropriate property settings such as:

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 17

maxSize=300

The Content Engine has a layered configuration system in which such property settings are loaded
from a number of different locations. During start-up, the Content Engine searches through a series of
locations (or configuration-roots) in turn and applies the settings it finds. The final property settings
displayed in the component browser, therefore, are a result of merging all the settings found in these
various locations. If a particular property is set in several locations, the last setting wins.

The service information section contains listings of all the .properties files loaded for a component,
in the order they were loaded. You can therefore use this section to find out where particular properties
are actually set.

For more information about the Content Engine's configuration system, see chapter 4.

2.1.15.4 Browsing Application and Publication Components

By default, the component browser displays the Content Engine's component hierarchy. You can,
however, also use it to examine the component hierarchy of any web applications supplied with
the Content Engine (the indexer web application, for example) or the component hierarchy of any
publication.

When you are browsing the Content Engine's own component hierarchy, Scope: Global is displayed
at the top of the component browser page. To display a different component hierarchy, click on the
Browse other scope link displayed below this heading, then select the name of the "scope" (i.e.,
application or publication) you want to browse.

2.1.16 Database Browser

This option displays the Escenic database browser. The database browser provides a simply
interface for submitting SQL queries to the database.

To use the database browser:

1. Enter an SQL query in the Enter SQL Query field.

2. Click on Submit Query.

The results of the query are then displayed on the page. The Enter SQL Query field is displayed
below the results (it may be off-screen), so you can enter another query. All valid queries you enter are
listed below the Enter SQL Query field: you can re-use them by clicking on them or remove them
from the list by checking the Remove check box before you click on Submit Query.

Click on Clear to clear the Enter SQL Query field. Click on Reset to recall the last valid executed
query.

This interface is provided to facilitate browsing of the Escenic database, not editing. Do not execute
any query that modifies the contents of the Escenic database.

2.2 List publications
This page lists all the publications currently served by the Content Engine, and provides various
publication management tools.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 18

It contains the following links:

Select all
Selects all listed publications.

Deselect all
Deselects all listed publications.

Invert checkbox selection
Selects all currently unselected publications and deselects all currently selected publications.

Information
Displays page containing useful information about one of the listed publications, and links for
accessing it in various ways.

Run field indexer
Generates the indexes used by the article:list tag. For information about why and when
you would want to use this option, see Escenic Content Engine Advanced Developer
Guide, section 3.2.

Update resources
Updates the resources of all currently selected publications. For further information about this
process, see section 2.2.1.

Delete
Deletes all currently selected publications. A new page is displayed on which the names of all the
selected publications are listed. To complete the operation, click Confirm.

2.2.1 Update Resources

The structure and characteristics of an Escenic publication are defined in a set of files that are
collectively referred to as publication resources. When a publication is created, a set of publication
resources must be uploaded to the Content Engine as a basis for the publication. Changes to an
existing publication may often require these publication resources to be modified. The Update
resources option allows publication resources to be modified by overwriting them with new versions.

For detailed information about the various publication resources, see the Escenic Content Engine
Resource Reference.

The usual procedure for updating publication resources is:

1. Prepare the updated resources and place them in a known location on your local machine ready
for upload.

2. On the escenic-admin List publications page, select all the publications that are to be
updated (you may have several publications based on the same resource set).

3. Select Update resources. A page containing the message "You have to upload a resources
first!" is usually displayed.

4. Click on upload. The Upload resources page is then displayed (see section 2.5).

5. Select the correct resource type for the resource you intend to upload.

6. Click on Browse... and locate the resource you intend to upload.

7. Click on Upload.

8. If the resource is successfully uploaded and validated, click on List publications.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 19

9. Repeat steps 2 and 3. This time, since you have now uploaded a resource, the "You have to
upload a resources first!" message is not displayed. Instead, the resource(s) you have uploaded
and the publications you have selected for update are listed. To update the listed publications,
click Confirm.

2.3 New publications
This page displays forms for creating new publications and for uploading the resources required to
create them.

The structure and characteristics of an Escenic publication are defined in a set of files that are
collectively referred to as publication resources. When a publication is created, a set of publication
resources must be uploaded to the Content Engine as a basis for the publication. For detailed
information about the various publication resources, see the Escenic Content Engine Resource
Reference.

The usual procedure for creating a new publication is:

1. Prepare a publication WAR file containing the required resources and place it in a known location
on your local machine ready for upload.

2. In escenic-admin, select New publications. The Upload resources page is then displayed
(see section 2.5).

3. Select Publication Definition resource type option.

4. Click on Browse... and locate the publication WAR file.

5. Click on Upload.

6. If the WAR file is successfully uploaded and the resources in it are successfully validated, click on
create a publication. This displays the Create Publication form.

7. Enter a name for the publication in the Publication Name field.

8. Do one of the following:

• Either enter a password for the publication administrator in the Administrator password
field and enter it again in the Verify password field.

• Or check Create publication without password.

You should only check Create publication without password if you have set up Active
Directory-based authentication (see chapter 15). Checking this option does not mean users
will be able to log in to Web Studio without entering a password. It just means that no
password is stored in the Content Engine database, so if you don't set up Active Directory-
based authentication and created an Active Directory user with the administrator user name,
then nobody will be able to log in as administrator of the publication.

9. Click on Submit.

It is also possible to upload the resources needed to create a publication individually, rather than
uploading them all together in a WAR file. For information about this and a more detailed description
of the Upload Resources page, see section 2.5.

This section describes how to create a single publication. In order to be able to use the publication,
you must also deploy the web application that will drive the publication (and possibly many other

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 20

similar publications). For information on how to deploy publication web applications, see Escenic
Content Engine Template Developer Guide, section 1.4.2.1.

2.4 Publication tools
This page contains a list of links that provide access to publication administration tools, described in
the following sections.

2.4.1 Manage Tag Structures

This option displays a tag management page. You can use this form to create and import tag
structures.

A tag structure is a hierarchical structure of tags, Tags are keywords that can be used to classify
publication content for search and retrieval purposes. You might, for example tag a travel article about
Thailand with the tags Travel and Thailand. Tags are organized as hierarchies in order to be able to
represent logical associations between the concepts they represent. If the tag Thailand, for example
is a child of another tag called Asia, then a search for content using the tags Travel and Asia would
return our article (possibly along with other travel articles about other Asian countries).

You can create as many tag structures as you wish, organized in any way you wish. You might for
example create separate tag structures for places, sports, genres, politics and so on. Once you have
created a tag structure, you can add tags to it in two ways:

• Import tags defined in XML files (see section 2.4.1.2)

• Allow Content Studio users to add tags to a structure on an ad-hoc basis (see Escenic Content
Engine Publication Administrator Guide, section 2.1.4.5)

2.4.1.1 Create a Tag Structure

If you have not previously created any tag structures, then the tag management page contains a single
form called Create new Tag Structure. To create a tag structure fill in the form's fields as follows
and click on Create:

Scheme
A tag structure is uniquely identified by its scheme, a specially formatted identifier string that
must conform to the entity portion of RFC 4151. You can create a valid scheme by conforming to
the following format:

structure-name.domain-name,yyyy

where:

structure-name
is a name for the structure. The name must not contain any spaces or special characters
other than '-' and '.' (the same rules apply as for domain names).

domain-name
is a domain name that is or has been owned by your organization.

yyyy
is one of the years in which domain-name was owned by your organization.

http://www.ietf.org/rfc/rfc4151.txt

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 21

You might, for example, create tag structures with the following scheme names:

places.mycompany.com,2011
sports.mycompany.com,2011
genres.mycompany.com,2011

Name
The tag structure's display name. This is the name that users will normally see, for example:
Places, Sports or Genres.

Description
A description of the tag structure and its purpose. The description for
genres.mycompany.com,2011, for example, might be:

Book, film and theatre (but not music) genres

As long as the scheme you specified is syntactically correct and does not already exist, the new scheme
is created, and appears in a Tagging Structures section (see section 2.4.1.2) below the Create new
Tag Structure form.

You can (in theory) also use this form to create tag structures based on tag collections maintained
by other organizations. In this case you would enter the other organization's scheme name in the
scheme field. You could then convert their tags to the tag syndication format described in section
2.4.1.3 and import it. Since this tag structure is maintained by a different organization, you would
then need to ensure that your users do not modify the imported structure. In practice, there are
currently very few standard tag collections available, so this possibility is not likely to be of much
interest.

2.4.1.2 Tagging Structures

All existing tag structures are listed in a Tagging Structures section below the Create new Tag
Structure form.

Two buttons are available for each tag structure:

Import
Click on this button to import tags from a tag syndication file to this tag structure. A new form is
displayed that you can use to locate the file on your local machine and upload it to the Content
Engine. See section 2.4.1.3 for a description of the tag syndication file format.

You can only use this function to add tags to a structure, not to update existing tags. Any tags
in an imported file that have the same term (that is, id) as an existing tag in the structure are
ignored.

Delete
Click on this button to delete this tag structure. When you delete a tag structure:

• All its member tags are deleted

• The deleted tags are removed from all content items in which they have been used.

When you click on this button, a confirmation form is displayed that indicates how many tags
the structure contains, and how many content items will be affected by the deletion. To complete
the deletion, click on Yes.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 22

2.4.1.3 classification-tags

The classification-tags schema defines the Escenic tag syndication format. The Escenic
tag syndication format can be used to import hierarchically structured tags into a predefined Escenic
tag structure.

Namespace URI

The namespace URI of the classification-tags schema is http://
xmlns.escenic.com/2011/classification-tags.

Root Element

The root of a classification-tags file must be a tags element.

2.4.1.3.1 alias

An alias of the tag tag element.

Syntax

<alias>
 text
</alias>

2.4.1.3.2 description

A description of the meaning and purpose of the tag represented by this element's parent tag element.

Syntax

<description>
 text
</description>

2.4.1.3.3 label

The label of the tag represented by this element's parent tag element. A tag's label is the string
displayed in user interfaces. There are no restrictions on the characters used in a label: spaces,
punctuation marks and special characters are all allowed.

Syntax

<label>
 text
</label>

2.4.1.3.4 tag

Represents a tag.

Syntax

<tag
 term="text"
 parent-term="text"?

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 23

 >
 <label>...</label>

 <description>...</description>?
 <alias>...</alias>*?
</tag>

Examples

• This example shows a root-level tag element with a description.

<tag term="eu">
 <label>European Union</label>
 <description>The European Union</description>
</tag>

• This example shows a tag element with a parent-term attribute, but no description.

<tag term="england" parent-term="uk">
 <label>England</label>
</tag>

Attributes

term="text"
A locally unique identifier for the tag represented by this tag element. "Locally unique" means
in this case that the tag must be unique not only within this tag syndication file, but also within
the tag structure to which it is being imported (the target structure may already contain a
number of tags). The term may not contain any spaces or any special characters other than ".",
"-" and "_".

parent-term="text" (optional)
A reference to the term of another tag under which the tag represented by this tag element
should be inserted. If this attribute is not specified then this tag will be created as a root-level
tag.

2.4.1.3.5 tags

The root element of an Escenic tag syndication format file.

Syntax

<tags>
 <tag>...</tag>+
</tags>

Examples

• This example shows a tags element containing a small number of tag elements.

<tags>
 <tag term="eu">
 <label>European Union</label>
 <description>The European Union</description>
 </tag>
 <tag term="uk" parent-term="europe">
 <label>United Kingdom</label>
 <description>The United Kingdom of Great Britain and Northern Ireland</
description>

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 24

 </tag>
 <tag term="england" parent-term="uk">
 <label>England</label>
 </tag>
 <tag term="fr" parent-term="eu">
 <label>France</label>
 </tag>
 <tag term="tag2">
 <label>Norway</label>
 <alias>Norge</alias>
 </tag>
</tags>

2.4.2 Grant a User Read/Write Permission

This option displays the Grant a user read/write permission form. You can use this form to:

• Change the access rights of an existing user

• Create a new user and grant it access to publications

To change the access rights of an existing user:

1. Select Existing user.

2. Enter a user name in the the User name field.

3. Click Next to display the second form.

To create a new user:

1. Select New user.

2. Enter the new user's credentials in the appropriate fields.

3. Select the publication to which the new user is to belong.

4. Click Next to display the second form.

The second form contains a list of all publications at the site. Select/unselect access rights as required
and click on Save.

If you need to assign other roles than Reader or Editor, then you must use Web Studio to do it. See
Escenic Content Engine Publication Administrator Guide, section 2.1.4.2 for details.

2.4.3 Export Publication Content

This option displays the Export from publication form. You can use this form to export an entire
publication or selected parts of a publication to Escenic syndication format files. To export content
from a publication, enter your requirements in the form and click on Export.

Use the controls in the form as follows:

Publication ID
Enter the ID of the publication from which you want to export content.

Section IDs
Enter a comma-separated list of the sections from which you want to export content. If you leave
this field empty, then content will be exported from all sections.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 25

Folder name
The path of the folder to which the exported files will be written. You can specify either an
absolute or a relative path. Relative paths are relative to the java.io.tmpdir system property.

Group files by object type
Check this option if you want different object types (e.g., content items, sections, section pages)
to be written to separate output files. Section pages, inboxes and lists are all based on the same
internal object type, and will therefore be written to the same file.

Maximum items per file
If you don't want to generate very large syndication files, you can limit the size by specifying the
maximum number of content items/sections etc. to be written to a file. If this limit is reached,
then several files will be generated.

Export sections
Check this option if you want sections to be exported.

Export content items
Check this option if you want content items to be exported. If you only want certain types
of content item to be exported, enter a comma-separated list of content type names in the
Content types field. If you leave this field empty then all content types will be exported.

Export pools
Check this option if you want section pages, lists and inboxes to be exported.

Export from time/Export to time
You can use these fields to limit the export to objects that have been modified within a specific
period of time. You can, for example, only export those objects that have changed or been added
since the last export was carried out.

2.4.4 Resolve Unresolved Relations

This option allows you to resolve unresolved relations. An unresolved relation is a content item
that has a "dangling" relation to another content item: the other content item has not yet been located,
so the relation is incomplete. Unresolved relations should not normally occur, but can arise after
import operations. To resolve all unresolved relations, simply click on Confirm. Any relations that
cannot be resolved (because the referenced content item cannot be found) are left unchanged.

2.5 Upload Resources
This page is displayed both when updating publication resources using the Update resources option
(see section 2.2.1) and when creating new publications using the New publications option (see
section 2.3).

To upload resources using this page you must:

1. Specify the type of resource you are going to upload by selecting one of the Type of resource
options

2. Either enter the path of the resource to be uploaded in the File to upload field or else click on
the Browse... button and locate the resource using the displayed file browser dialog.

3. Click on Upload.

The resource type options are:

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 26

Publication definition
A publication WAR file is to be uploaded. A publication WAR file contains all the resources
needed to define an Escenic publication. It will also usually contain the JSP templates defining
the web application that drives the publication, and may contain syndication files with content
to be imported into the publication. This is the option you usually choose when creating a new
publication (although you can also use it when updating existing publications). It is a convenient
means of importing all the resources in one go. The JSP templates, which are not required for
the purpose of creating new publication or updating resources are simply ignored.

Content type definitions
A content-type resource is to be uploaded. This is an XML file defining all the content types a
publication may contain. For a detailed description, see Escenic Content Engine Resource
Reference, chapter 2.

Feature definitions
A feature resource is to be uploaded. This is plain text file containing property settings that
set various Content Engine features for a publication. For a detailed description, see Escenic
Content Engine Resource Reference, chapter 6.

Image version definitions
An image-versions resource is to be uploaded. This is an XML file defining all the different
versions of images that a publication may contain. For a detailed description, see Escenic
Content Engine Resource Reference, chapter 3.

Layout definitions
Not in use.

Layout group definitions
A layout-group resource is to be uploaded. This is an XML file defining the layouts to be
used on a publication section pages. For a detailed description, see Escenic Content Engine
Resource Reference, chapter 4.

Content definitions
A syndication file is to be uploaded, containing content to be imported to the publication. For
general information about syndication files, see the Escenic Content Engine Syndication
Reference.

Other type of resource
Select this option if you want to upload any other resource types (for example, a plug-in resource
type). You must then enter a string identifying the resource type in the Please specify field.

The Upload option not only uploads the specified resources, it also validates them. After the upload
operation, the page is redisplayed, this time with an Available Resources section that contains a list
of currently uploaded resources showing their validation status. Any resource that fails to validate is
marked Not valid, and followed by an error message providing some indication of what the problem
is. If this happens, correct the error and upload a new version of the resource.

If you want to upload several resources you can either package them in a publication WAR file and
upload that or else select the Upload option several times to upload them individually.

If you upload a complete set of publication resources that is sufficient to create a publication, then a
Create Publication section appears on the page, containing the message "You now have enough
resources to create a publication". To create a publication from these resources, click on the create
a publication link.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 27

3 The indexer-webapp Web Application

An indexing web application called indexer-webapp is included with the Escenic Content Engine.
It receives content items passed to it by one of the Content Engine's indexer web services and
passes them on to Solr, the search engine used by Content Studio (and also by most publication web
applications). This chapter contains a brief description of the indexer-webapp administration
interface and how to use it.

When the indexer-webapp is running, you can access its administration interface it by starting a
browser and pointing it at:

http://your-server:8080/indexer-webapp/admin/

where your-server is the domain name or IP address of the server on which the indexer-webapp is
running.

The administration interface is a single page divided into the following sections:

• Configuration

• Current state

• Current Statistics

• Indexer actions

displays information about the configuration and current status of the indexer, plus four buttons you
can press to affect the operation of the indexer.

For more information about the current state of the search engine, visit the Solr administration page
by pointing your browser at:

http://your-server:8080/solr/admin/

where your-server is the domain name or IP address of the server on which Solr is running. For
information about about how to use this interface and general information about Solr, visit http://
lucene.apache.org/solr/.

3.1 Configuration
This section displays the following information about the indexer's configuration:

Base Query URI
The URI of the Content Engine web service from which the documents to be indexed are read.
This URI is set in the Tomcat configuration file context.xml (see Escenic Content Engine
Installation Guide, section 3.8).

Style sheet
The XSL stylesheet used to prepare documents for indexing.

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 28

Update URI
The URI of the Solr instance to which index updates are sent. This URI is set in the Tomcat
configuration file context.xml (see Escenic Content Engine Installation Guide,
section 3.8).

3.2 Current State
This section displays information about the current state of the indexing process. If Number of
documents read but not yet processed is 0, then indexing is complete. Click on your browser's
Refresh button to update the displayed information.

3.3 Current Statistics
This section displays statistics about the indexing process.

3.4 Indexer Actions
Under normal operation, the indexer starts by indexing the most-recently modified content item and
works backward to the least-recently modified content item. While it is doing so, new changes may
be made: existing content items may be modified, new content items created. The indexer prioritizes
the indexing of these newly-modified and newly-created content items, and interrupts the indexing of
older content in order to deal with them. Eventually, however, the indexer will index the least-recently
modified content item, and then only need to deal with incoming changes.

The buttons in the administration interface affect the indexing process as follows:

Reindex...
Aborts the current indexing process (whether or not the indexer has succeeded in reaching the
least-recently modified content item) and restarts it from the most recently modified content
item. As it works backwards it will update the indexes of previously indexed content items.

Re-indexing may be necessary for a variety of reasons (it is often required after installing a new
version of the Content Engine).

Re-indexing may take a long time (possibly hours). During this period, searches executed in
Content Studio may return incomplete results. In some production environments this may be
unacceptable: see section 5.3 for a description of how to avoid the problem.

Clicking on this button displays a new page containing the message Reindexing.... To
redisplay the administration page, simply click on your browser's Back button.

Pause Indexer
Temporarily suspends the current indexing process. You can resume the process by clicking on
the Resume Indexer button.

Clicking on this button displays a new page containing the message Indexer is now
paused.... To redisplay the administration page, simply click on your browser's Back button.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 29

Resume Indexer
Resumes an indexing process that has previously been suspended using the Pause Indexer
button.

Optimize Solr Index
Optimizes the index. Old indexes can become fragmented and disorganized. Selecting this
option sends an optimization request to Solr. Solr then creates a new, reorganized and
optimized copy of the existing index. When the optimized copy is complete, the old index is
deleted.

Do not select this option unless you are certain that there is sufficient disk space available on
the Solr host. (In order to optimize an index you need enough free disk space to hold another
two copies of the index.)

Clicking on this button displays a new page containing the message Optimizing index....
To redisplay the administration page, simply click on your browser's Back button.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 30

4 Configuring The Content Engine

For configuration purposes, the Content Engine is regarded as a hierarchy of configuration
objects representing various parts of of the system. These configuration objects are called called
components. Each component has properties that can be set in a corresponding configuration file.
The configuration files are standard Java properties files with a well-defined format (see the Javadoc
description of java.util.Properties.load(java.io.InputStream)).

The configuration files are stored in a folder tree that reflects the component hierarchy.
At the top of a Content Engine configuration tree, for example, you will find files such as
ServerConfig.properties, containing very general configuration settings. At the bottom of
the folder tree are files such as /etc/escenic/engine/common/com/escenic/webservice/
search/DelegatingSearchEngine.properties that contain detailed settings for very specific
parts of the system.

4.1 Configuration Layers
The Content Engine's configuration system is not only hierarchical, it is also layered. What this
means is that a Content Engine installation can contain several configuration trees in different
locations. These trees can be considered as layers because they are read in sequence, each layer adding
new property settings or overwriting settings already made in lower layers. Right at the start of the
configuration process, the Content Engine loads a special configuration layer called the bootstrap
layer, which configures the configuration process itself. It does this by defining:

• How many configuration layers there are

• The relative priority of the layers

• Where the layers are located

Once this has been done, the various layers are loaded in turn and merged into the final server
configuration.

The purpose of this layering is to simplify both the upgrade process and the management of large
multi-server installations as follows:

• The Content Engine is delivered with a default configuration layer, which has lowest priority,
and an add-on configuration layer that can be used by add-ons to make any changes that they
require. You should never modify these layers, since they are overwritten when the Content Engine
and/or add-ons are upgraded, and your changes will be lost.

• Also delivered with the system is a skeleton configuration layer that you can use as a basis
for creating configuration layers of your own. You will need to create at least one site-wide
configuration layer called the common configuration layer. In this layer you can override
default settings that do not meet your site's requirements.

• If you are running a multi-host site, you will also probably need to create additional configuration
layers for each host that override any properties for which host-specific settings are required. These
are referred to as host configuration layers.

• You can create even more layers: on large multi-host sites you may have "families" of hosts that
perform the same function, and therefore have many configuration settings in common. It may

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 31

then make sense to create family configuration layers between the common configuration layer
and the host configuration layers.

Note that the individual layers do not need to be complete: a layer can consist of just one
.properties file, and a .properties file does not need to contain settings for all of a component's
properties.

Configuration layers can be loaded from three different types of location or depot:

• JAR files in the classpath

• Explicitly specified JAR files

• Specified file system locations

The default configuration layer and the plug-in configuration layer are loaded from JAR files in the
classpath.

You are recommended to create your common configuration layer (and any other layers you need)
in the file system, ideally in the /etc/escenic/engine folder. The delivered bootstrap layer is
configured to look for your configuration layers in this location. For detailed information on how to
create configuration layers, and how to modify the bootstrap layer so that they are read in the correct
order, see section 4.3.

4.2 Configuration File Format
A configuration file consists of a sequence of assignments of the form:

keyword=value

Each assignment must appear on a separate line. Lines can however be broken by using the backslash
(\) as a continuation character. The use of the equals sign is optional (it can be replaced by white
space). Otherwise white space is ignored.

Lines that start with either "#" or "!" are treated as comments and discarded.

In most cases:

keyword
is the name of a property

value
is the value to be assigned to the property

One of the keywords may be the special keyword $class. In this case value must be the fully qualified
name of a class. This tells the system to create an object of the specified class: the properties specified
in the rest of the file are assigned to this object. A complete property file must in fact include such an
assignment, since there must be an object to assign properties to. However, this assignment is always
included in the default layer configuration files, so it can usually be omitted from configuration files
in higher layers. (Note, however, that if you add a configuration file to one of your layers that does not
exist in any of the supplied lower layers, then this class assignment is required.)

Complex Properties

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 32

Most properties in the configuration files have simple values such as integers, string or booleans. More
complex assignments can be made, however:

Component objects
Components can be "wired together" by means of property assignments. Component A, for
example, may have a property that needs to be set to reference component B. This kind of
property can be set by an assignment of the following form:

keyword = component-path/component-name

For example:

otherComponent = /mycomponents/Important

The component path does not have to be absolute. You can also specify a path relative to the
folder of the current component. For example:

otherComponent = ../../Important

Arrays
Array properties can be set by separating the values in the array with commas, for example:

numbersToCheck = 10,20,30,45,70

Maps
Mapped properties can be set by a series of assignments of the following form:

keyword.key = value

For example:

component.3 = /mycomponents/Important
component.2 = /mycomponents/LessImportant
component.1 = /mycomponents/Unimportant

Note that mapped properties are set in alphabetical key order (1, 2, 3 in this case), not the order
in which they appear in property files. This ensures a fixed order of creation even when the
assignments are spread across several configuration layers.

Variables

The values assigned to properties can include placeholders for variables. When the property is
assigned, the placeholder is replaced by the value of the variable it references. The syntax for a variable
placeholder is:

${variable-reference}

Four different kinds of variable reference are supported:

System property references
variable-reference can be the name of any system property. For example:

myUrl = http://${escenic.server}:8080/my/page/

Component property references
variable-reference can be a reference to any component property. It must have the form:

component-path/component-name.property-name

For example:

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 33

myImportantValue=${/mycomponents/Important.value}

JNDI references
variable-reference can be a reference to any JNDI name. It must have the form:

jndi:jndi-name

For example:

providerUrl=${jndi:java:comp/env/PROVIDER_URL}

JNDI references are particularly useful as a means of creating configurations that can be used in
more than one environment (both a test environment and production environment)

Environment variable references
variable-reference can be a reference to any operating system environment variable. It must
have the form:

env:environment-variable

For example:

importantOsValue=${env:IMPORTANT}

Configuration File Encoding

Configuration files, in accordance with the rules for standard Java properties files, must be encoded
using the ISO-8859-1 character set. If you need to include characters outside this character set, then
you can do so using the following syntax:

\uxxxx

where xxxx is the hexadecimal Unicode value of the required character. The use of the backslash as an
escape character to introduce Unicode values and as a continuation character means that you must
always repeat any backslashes that you want to appear in the file. This Windows path, for example:

C:\my\windows\path

will be read as:

C:mywindowspath

unless you repeat the backslashes as follows:

C:\\my\\windows\\path

Example

The following example illustrates some the property types discussed above.

$class = com.mycompany.SomeClass
numbersToCheck = 10,20,30,45,70,\
 131,199,343,546
otherComponents = ./Other
somePath = ${/ServerConfig.filePublicationRoot}/myroot
Fruits
 fruit.apple /mycomponents/Apple
 fruit.orange /mycomponents/Orange
 fruit.banana /mycomponents/Banana

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 34

It contains the following items:

• The creation of a component object.

• An array of numbers, with a line break.

• A reference to another component called Other in the same folder as this one.

• A path composed of the value of the ServerConfig component's filePublicationRoot
property and the string value /myroot.

• A comment.

• A mapped property called 'fruit' with three values. Note that the properties will be created in
alphabetical order, not the order which they appear. Also note the omission of the '=' sign, which is
not required.

4.3 Managing The Configuration Layers
The first time the Content Engine is installed, the assembly tool's initialize target creates the
bootstrap layer in /opt/escenic/assemblytool/conf. The bootstrap layer is predefined to look
for the following configuration layers, and read them in the specified order:

1. default layer (in the delivered Content Engine JAR files)

2. add-on layer (in add-on JAR files)

3. common layer (in /etc/escenic/engine/common)

4. family layer (in /etc/escenic/engine/family/family-name)

5. host layer (in /etc/escenic/engine/host/host-name)

The following sections tell you how to:

• Create the common configuration layer

• Add a host configuration layer

• Add a family configuration layer

• Add further layers

• Change the location of a layer

4.3.1 Create The Common Configuration Layer

A skeleton configuration layer is provided in /opt/escenic/engine/siteconfig/config-
skeleton. To create a common configuration layer from this skeleton, log in as escenic and copy
the configuration layer to /etc/escenic/engine/common.

$ cp -r /opt/escenic/engine/siteconfig/config-skeleton/* /etc/escenic/engine/common/

You can now configure your whole Escenic installation by modifying the .properties files in the /
etc/escenic/engine/common/ tree.

4.3.2 Add A Host Configuration Layer

If your Escenic installation is spread across more than one host machine, then you will almost certainly
need to set some properties differently on the different hosts. You can do this by creating a host

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 35

configuration layer which is read after the common configuration layer. Any settings made in this layer
will therefore override settings made in lower layers.

Obviously the contents of this layer need to be different for each host. The recommended method of
doing this is to keep all your configuration layers (in fact the whole /etc/escenic tree) in a shared
folder. If you have set up your system in this way, then you can create a set of host layers as follows:

1. Create an /etc/escenic/engine/host/host-name folder for each host:

$ mkdir -p /etc/escenic/engine/host/host-name

2. Copy the files containing the properties you are interested in overriding from the skeleton
configuration layer to the corresponding relative location in each host-name folder.

3. Modify each of the copied .properties files as required.

This will work because the location of the host configuration layer is defined as follows in /opt/
escenic/assemblytool/conf/layers/host/Files.properties:

fileSystemRoot=/etc/escenic/engine/host/${hostname env:HOSTNAME env:COMPUTERNAME
 "localhost"}/

If you are using a different location for your configuration layers, then you will need to modify this
setting and redeploy (see section 4.3.5).

4.3.3 Add A Family Configuration Layer

In really large installations with many servers, you may decide that it makes sense to define "families"
of hosts that have similar functions (a "publishing" family and a "presentation" family, for example),
and define corresponding configuration trees that enable them to be controlled as a group. Any
properties that you want to be the same for all publishing hosts can then be set once in this layer rather
than being set separately for each host in the host configuration layer.

You can create a family configuration layer in the same way as a host layer:

1. Create an /etc/escenic/engine/family/family-name folder for each family:

$ mkdir -p /etc/escenic/engine/family/family-name

2. Copy the files containing the properties you are interested in overriding from the skeleton
configuration layer to the corresponding relative location in each family-name folder.

3. Modify each of the copied .properties files as required.

The location of the family configuration layer is defined as follows in /opt/escenic/
assemblytool/conf/layers/family/Files.properties:

/etc/escenic/engine/family/${com.escenic.config.engine.family "default"}

In order for this setting to work, the system property com.escenic.config.engine.family must
be set on each host to the name of the family to which the host belongs.

If you are using a different location for your configuration layers, then you will need to modify this
setting and redeploy (see section 4.3.5).

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 36

4.3.4 Add Further Layers

If you want, you can add further layers to create an even more flexible configuration system. To add an
extra configuration layer between the family layer and the host layer, for example, you would need to:

1. Open /opt/escenic/assemblytool/conf/Nursery.properties in a text editor.

2. Change this setting:

layer.05=/layers/host/Layer

to:

layer.06=/layers/host/Layer

3. Add a property defining your new layer (we'll call it "group") as layer 05:

layer.05=/layers/group/Layer

4. Create two new .properties files: /opt/escenic/assemblytool/conf/
group/Layer.properties and /opt/escenic/assemblytool/conf/group/
File.properties. /opt/escenic/assemblytool/conf/group/Layer.properties
should contain the following:

$class=neo.nursery.PropertyFileConfigurator
depot=./Files

and /opt/escenic/assemblytool/conf/group/File.properties should contain:

$class=neo.nursery.FileSystemDepot
fileSystemRoot = /etc/escenic/engine/group/${escenic.group}

5. You can now create group configuration layers in exactly the same way as you created host and
family layers, and use system properties to select the required layer in the same way.

6. Run the assembly tool.

7. Deploy the results.

8. Restart.

The bootstrap layer will never be overwritten by the assembly tool once it has been created, so any
changes you make are persistent. If the bootstrap layer should ever be deleted, however, a new one can
be created by running the assembly tool's initialize target.

Do not insert your own layers below layer 03.

4.3.5 Change The Location of a Layer

To change the location of one of the layers:

1. Open the File.properties file for the layer you want to move. For example, to move the
common layer, open /opt/escenic/assemblytool/conf/common/File.properties.

2. Edit the fileSystemRoot property to point to the required location.

3. Copy your common configuration layer to the new location.

4. Run the assembly tool.

5. Deploy the results.

6. Restart.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 37

The bootstrap layer will never be overwritten by the assembly tool once it has been created, so any
changes you make are persistent. If the bootstrap layer should ever be deleted, however, a new one can
be created by running the assembly tool's initialize target.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 38

5 Search Engine Configuration and Management

The Content Engine's search functionality is provided by Apache Solr, a Java-based open source search
engine that runs as a web application alongside the Content Engine. A copy of Solr is bundled with
the Content Engine, and if you follow the standard installation procedure described in the Escenic
Content Engine Installation Guide, then a solr instance is deployed alongside every Content
Engine you deploy. All Content Studio search functions depend on Solr, and Solr can also be used to
drive the search functions in your publication web applications.

The use of an external search engine that is completely decoupled from the Content Engine ensures
a high degree of flexibility. It is possible to configure the search engine and the other components
involved in providing search functions in many different ways to meet differing requirements. The
components involved in providing the Content Engine's search functions are:

indexer web services
Two indexer web services are provided by the Content Engine for logging changes to content
managed by the Content Engine. The indexer web services are called:

index
This web service helps to maintain the internal index used by Content Studio and other
editorial systems. Every time any content item is added, modified or deleted, it adds an
entry to its change log. The entry contains the URIs of the documents affected by the
change.

presentation-index
This web web service helps to maintain the external index used by the presentation
system. It works in exactly the same way as index except that it does not log updates
to staged content items, since staged content items (unpublished revisions of published
content items) should not be visible to web site visitors.

indexer web application
An indexer web application runs inside an application server together with a solr web
application. Every five seconds, it submits a requests to one of the indexer web services and
obtains the URIs of the documents that have changed in the last 5 seconds. It then submits
requests to the Content Engine for these documents, passes them through an XSL filter to
prepare them for indexing and posts the results to solr.

solr
solr also runs inside an application server. It generates and maintains an index based on the
documents submitted by its indexer. It also responds to any search requests submitted to it,
either from Content Studio clients or from publication web applications.

5.1 The Standard Configurations
In a standard Content Engine installation, both solr and the indexer application are deployed
alongside the Content Engine in the same Tomcat instance. The solr instance is used to provide
search functionality for Content Studio. Template developers can optionally use the same solr
instance to provide search functionality for their publication web applications (although you should

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 39

never do this for production purposes). The following illustration shows a single-host installation of
the Content Engine set up in this way:

Content Studio
client

E
d

it
o

ri
a

l/
P

re
se

n
ta

ti
o

n
 h

o
st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

Publicat ion webapp

Content Engine

Indexer webservices

Indexer webapp

Solr webapp

This kind of configuration is not recommended for production purposes since the indexing
requirements for publication web applications are very different from Content Studio's requirements
(see section 5.2).

In a multiple-host installation, the hosts on which the Content Engine runs are typically specialized:
some are editorial hosts, supporting a network of Content Studio clients, while others are
presentation hosts supporting public access to the organization's publications. The default
configuration of the search components (as described in the Escenic Content Engine Installation
Guide) is, however, almost the same:

E
d

it
o

ri
a

l
h

o
st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

E
d

it
o

ri
a

l
h

o
st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

P
re

se
n

ta
ti

o
n

 h
o

st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

P
re

se
n

ta
ti

o
n

 h
o

st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

P
re

se
n

ta
ti

o
n

 h
o

st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

Publicat ion webapp

Content Engine

Indexer webservices

Indexer webapp

Solr webapp

The differences between the two configurations are:

• The indexer web applications on the editorial hosts are set up to use the internal indexer web
service (index), while the indexer web applications on the presentation hosts are set up to use the
external indexer web service (presentation-index).

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 40

• Only one instance of each indexer web service is used, for reasons of efficiency. Using the indexer
web services in every Content Engine can result in a lot of unnecessary database accesses.

The web service used by each indexer web application is specified by means of an Environment
element in the Tomcat context.xml file, as described in Escenic Content Engine Installation
Guide, section 3.8.

5.2 Modifying The Standard Configuration
The standard search configuration works well enough for development and test purposes, but is not
suitable for a production environment. This section discusses some of the kinds of changes you can
make, and some of the issues involved.

5.2.1 Using the Right Indexer Web Service

The Content Engine provides two indexer web services, one for internal use (called index)
that logs information about all changes made to content items, and one for external use (called
presentation-index) that omits changes made to staged content items. However, the standard
search configuration includes only one solr instance and one indexer webapp, which are configured
to use the internal web service. This means that if you use the standard configuration for production
purposes, public search results will contain results from staged content items that are not themselves
public.

You can avoid this problem in two ways:

Disable content item staging
This may be an acceptable solution in some cases, but will result in reduced functionality for
writers and editors. See Escenic Content Engine Advanced Developer Guide, chapter
21 for details.

Configure a second solr instance and indexer webapp
One solr instance/indexer webapp is configured to use the index web service, and the other is
configured to use the presentation-index web service.

5.2.2 Customizing the Index Schema

The default solr index schema delivered with the Content Engine is optimized for editorial purposes:
it indexes all the fields needed to support the search functionality provided by Content Studio,
resulting in very large indexes. This is acceptable in the editorial context, since the number of
concurrent Content Studio users, even in a very large organisation, is not likely to be very large.
The presentation hosts in a large Escenic installation, however, can be required to serve many
thousands of concurrent users, and the default solr configuration may perform poorly in this context.

In other words, the default configuration is fine for the editorial hosts in a production system, but
for the presentation hosts you are recommended create a custom indexer configuration that only
indexes the fields actually needed to support the kinds of search required in your publications.

To do this, open var/lib/escenic/schema.xml for editing on each of your presentation hosts,
and modify the index schema to meet your requirements. Editing this file is outside the scope of this
manual. In order to tune the search engine you need to take account of both the contents of your
publications, your users' needs with regards to search and the limitations imposed by your particular

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 41

hardware configuration. For further information and advice on tuning, see the Solr documentation on
http://lucene.apache.org/solr/.

5.2.3 Isolating The Search Engine

Searching and indexing can be resource-intensive processes. Co-locating solr with the Content
Engine can therefore sometimes prove to be a bad idea, especially in the case of presentation hosts,
which may need to respond to large numbers of simultaneous searches and ordinary document
requests. However, since the Content Engine, solr and the indexer are all independent web
applications that communicate via standard, stateless HTTP requests, you can locate them wherever
you want in order to achieve the best possible load distribution.

The following sections describe two different ways of isolating the search engine:

• Running the search engine in a separate webapp container.

• Running the search engine on a separate host.

For a production system you should never use the default configuration where solr runs in
the same webapp container as the Content Engine. The reason for this is that solr can at times
consume large amounts of memory and trigger large garbage collection operations in the JVM,
which has severe effects on Content Engine performance. At production installations, solr must
be run in a separate JVM from the Content Engine if you don't want to run into unnecessary
performance problems. The simplest way to achieve this is to run it in a separate webapp container
(that is, a separate Tomcat instance) as described in section 5.2.3.1.

5.2.3.1 Search Engine in Separate Container

The following illustration shows a single-host installation where solr is running in a separate webapp
container:

Content Engine web service

Content Studio
client

E
d

it
o

ri
a

l/
P

re
se

n
ta

ti
o

n
 h

o
st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t-
1

)
W

e
b

 c
o

n
ta

in
e

r
(T

o
m

ca
t-

2
)

Publicat ion webapp

Content Engine

Indexer webservices

Indexer webapp

Solr webapp

To do this you would need to:

1. Install a second Tomcat instance on your host. Make sure you set it up to listen on another port
than your main Tomcat instance.

2. Remove the solr and indexer web applications supplied with the Content Engine from your
original Tomcat instance.

3. Deploy the solr and indexer web applications supplied with the Content Engine on the new
Tomcat instance.

4. Add the following Environment elements to your new Tomcat instance's context.xml
configuration file:

http://lucene.apache.org/solr/

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 42

<Environment name="escenic/indexer-webservice"
 value="http://localhost:8080/indexer-webservice/index/"
 type="java.lang.String" override="false"/>
<Environment name="escenic/index-update-uri"
 value="http://localhost:8081/solr/update/"
 type="java.lang.String" override="false"/>
<Environment name="escenic/solr-base-uri"
 value="http://localhost:8081/solr/"
 type="java.lang.String" override="false"/>
<Environment name="escenic/head-tail-storage-file"
 value="/opt/escenic/indexer/head-tail.index"
 type="java.lang.String" override="false"/>
<Environment name="escenic/failing-documents-storage-file"
 value="/opt/escenic/indexer/failures.index"
 type="java.lang.String" override="false"/>

This sets up the indexer web application to use the indexer web service on the original Tomcat
instance (port 8080 in this example) and the solr installation on the new Tomcat instance (port
8081 in this example).

5. Modify your Content Engine configuration to use the new solr installation. To do this
you need to edit configuration-layer-root/com/escenic/webservice/search/
DelegatingSearchEngine.properties and set the solrURI property as follows:

solrURI=http://pub1.example.com:8081/solr/select

(assuming your new Tomcat instance is listening on port 8081).

Isolating solr in this way would ensure that it does not have too severe an effect on the operation
of the Content Engine. Ultimately, of course, performance is limited by the hardware the installation
is running on, but separating solr from the Content Engine in this way will avoid a major cause of
unnecessary performance degradation. If solr activity still causes performance problems, then you
should consider moving solr to a different host as described in section 5.2.3.2.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 43

5.2.3.2 Search Engine on Separate Host

The following illustration shows a multi-host installation where solr is running in a single, dedicated
search host:

S
e

a
rc

h
 h

o
st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

E
d

it
o

ri
a

l
h

o
st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t-
1

)
W

e
b

 c
o

n
ta

in
e

r
(T

o
m

ca
t-

2
)

P
re

se
n

ta
ti

o
n

 h
o

st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

P
re

se
n

ta
ti

o
n

 h
o

st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

P
re

se
n

ta
ti

o
n

 h
o

st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t)

E
d

it
o

ri
a

l
h

o
st

W
e

b
 c

o
n

ta
in

e
r

(T
o

m
ca

t-
1

)
W

e
b

 c
o

n
ta

in
e

r
(T

o
m

ca
t-

2
)

Publicat ion webapp

Content Engine

Indexer webservices

Indexer webapp

Solr webapp

To do this you would need to:

• Install Tomcat on your search host.

• Deploy the solr and indexer web applications supplied with the Content Engine on the search
host.

• Copy the solr configuration files supplied with the Content Engine to the search host, making sure
to modify the index schema to meet your requirements, as described in section 5.2.2.

• Modify your publication web applications to use the solr instance on your search host.

Isolating solr in this way would ensure that re-indexing, for example, does not adversely affect
response times on your presentation hosts. However, it would also make the search host a single
point of failure. A more robust solution would be to have two or more search hosts, and direct requests
to them via a load balancing and/or fail-over service so that:

• Requests are evenly distributed between the search hosts

• If one host fails, requests are re-directed to other hosts

Load balancing/fail-over strategies can be implemented in many different ways using a variety of
different standard products and technologies. Exactly how you do this is outside the scope of this
manual: the point is that since all the components involved in searching and indexing communicate via
standard, stateless HTTP requests, you can do it using standard web management techniques.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 44

5.2.3.3 Setting Timeouts and Limits

You can control Indexer performance by setting various timeouts and limits. These limits are set in two
different places:

• The Tomcat context.xml file

• In your configuration layers

You can set the limits by adding the following Environment elements to the Tomcat context.xml
file:

escenic/index-producer-connection-timeout
The connection timeout for connection to the indexer web service, specified in milliseconds. The
default value is 4000.

escenic/index-producer-socket-timeout
The socket timeout for connection to the indexer web service, specified in milliseconds. The
default value is 4000.

escenic/index-consumer-connection-timeout
The connection timeout for connection to Solr, specified in milliseconds. The default value is
4000.

escenic/index-consumer-socket-timeout
The socket timeout for connection to Solr, specified in milliseconds. The default value is 4000.

You can parameters governing the indexing of binary files by editing com/escenic/search/index/
BinaryIndexerPlugin.properties in the default configuration layer. Of particular interest are
the properties

maxWaitTime
The maximum time to wait for indexing of a binary file, specified in milliseconds. The default
value is 3000.

maxFileSize
The maximum size of binary file to index, specified in bytes. The default value is 20971520 (i.e,
20MB).

5.3 Re-indexing
From time to time it may be necessary to completely re-generate an index. Reasons for re-indexing
include:

• A Content Engine upgrade. Some upgrades include modifications to the default solr schema used
by Content Studio.

• Changes to one or more of your publications, or the addition of new search functionality require
changes to your own custom solr schema.

In theory, all you need to do to re-index your publications is click on the Reindex... button on the
indexer web application's admin page. However, the re-indexing process may take several hours
on large sites, and while it is in progress, search requests will return incomplete results. In many
production environments, reduced search functionality over several hours is not acceptable. In such

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 45

cases you can avoid the problem by generating the new index using a separate, non-production Tomcat
instance, and then copying the new index to the production environment.

The exact procedure for doing this is installation-dependent, but involves the following general steps:

1. Install a Tomcat instance somewhere in your network that you can use for generating the new
index. (Alternatively you can make use of some existing non-production Tomcat instance - on a
test server, for example.)

2. Deploy solr and indexer web applications on the server.

3. Copy context.xml from one of your production Tomcat configurations to your indexing
Tomcat instance. This ensures that your indexer web application will be correctly configured to
communicate with the Content Engine's indexer web service. By default, context.xml is located
in /opt/tomcat/conf/.

4. Copy the solr configuration files (usually located in /var/lib/escenic/solr/default/)
from your production solr instance to your indexing instance.

5. Modify the copied configuration as necessary for generating the new index. You might, for
example, need to replace the schema file, schema.xml.

6. Start a browser and display the new indexer web application's admin page
(http://host:port/indexer-webapp/admin/)

7. Click on Reindex..., then click on your browser's Back button to redisplay the admin page.

8. Wait for the indexing job to complete. The Current state section of the admin page shows the
progress of the indexing operation, but it is not refreshed automatically. Click on your browser's
Refresh button from time to time and check the Number of documents read but not yet
processed value. When this value reaches 0, indexing is complete.

9. Test the generated index. The easiest way to do this is to use Solr's administration interface. Open
a web browser, go to http://host:port/solr and follow links to the correct administration
page (exactly how you get there is installation-dependent). The administration page contains a
search field that you can use to execute test searches, plus links to the Solr documentation.

10. If you are not satisfied with the results, make the required changes to your configuration files, and
try again (from step 6). Otherwise, continue.

11. Stop the Tomcat instance in which your production solr instance is running.

12. Copy your modified solr configuration files from your indexing instance to the production
instance.

13. Copy the new index file (usually /opt/escenic/indexer/head-tail.index) from your
indexing instance to the production instance.

14. Restart your production Tomcat instance.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 46

6 Caching

In order to reduce the load on the database, the Content Engine maintains a number of internal
caches. Objects and other items of information loaded from the database are cached in memory, and
may in fact be cached in more than one of the caches. Once an item has been added to a cache, it is
retained until:

The item is modified
Any item that is modified is automatically deleted from the cache.

The cache is full
The cache has a maximum size. When the cache reaches this maximum size, some items are
deleted from the cache to make room for the new arrivals. The least-recently used items are
deleted.

The cache is manually flushed
The caches can be manually flushed using escenic-admin. See section 6.1 for details.

The server is shut down
Whenever the server is shut down or restarted, all caches are flushed.

A typical example of a cache configuration file, would look like this:

maxSize=1000
validSeconds=-1
throwCount=300
objectLimit=10000
objectsToKill=100

6.1 Flushing Caches
Caches can be flushed while the server is running. To do so:

1. Go to the escenic-admin application's component browser. (For details, see section 2.1.15).

2. Use the component browser to find the cache component you want to reset.

3. Invoke the cache component's flush method. For instructions on how to do this, see section
2.1.15.2.

6.2 Tuning The Object Caches
You can tune the object caches by setting the following cache properties:

maxSize
The maximum number of objects allowed in the cache.

throwCount
The number of objects that will be removed from the cache once maxSize is reached. You
should normally set it to at least 10% of maxSize, since the process of identifying which objects
to remove carries an overhead. If you set throwCount very low, then a small number of objects

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 47

will be removed very frequently. Removing a larger number of objects less often is usually more
efficient.

validSeconds
You can use this property to set a time threshold (in seconds) after which objects are removed
from the cache. This prevents modified objects from surviving in the cache too long. However,
the Content Engine is in general efficient at removing invalid objects, so it can usually be set to
-1 (which disables this process).

These properties are set by editing configuration files. For general information about editing Escenic
configuration files, see section 4.2. You can also make temporary changes to cache settings while the
Content Engine is running using the escenic-admin application's component browser (see section
2.1.15).

Ideally, all caches should be large enough to hold all the elements ever added to it: this would mean an
element would never need to be loaded from the database more than once. In practice, this is unlikely
to be possible due to memory limitations, so trade-offs must be made. Tuning the object caches is
therefore usually a trial-and-error process aimed at finding the best possible set of trade-offs for a
particular installation. If cache limits are set too low, the database will be accessed too often, resulting
in reduced performance. If cache limits are set too high, memory can be overloaded, which also results
in reduced performance. It is worth noting, however, that a high cache limit can only cause problems
if the cache space is actually used: setting a cache limit too low, however, is guaranteed to have some
effect on performance.

In general, the best way to tune the caches is to regularly check the performance summary displayed
on the escenic-admin application's Performance Summary page (see section 2.1.4). This
summary contains a general Caches section for the Content Engine's caches, plus individual sections
listing information about the caches in each web application. For information on how to interpret the
statistics displayed in these tables, see section 2.1.4.1.

When determining cache sizes you also need to take into account how much memory they will occupy,
and this is a function of both the number of objects in the cache and the size of those objects. This is
particularly significant in the case of web applications' PresentationArticleCaches, since the size
of the objects held in them can vary widely. If a publication's typical content items are large, then its
PresentationArticleCache may become very large. If you know the average size of the articles in
a publication, then you can estimate the memory the cache is likely to consume as follows:

If an 'average' document is 15KB of plain (8-bit) text (either HTML or XML), it will basically occupy
30KB as a Java object because Java uses 16-bit encoding internally. In addition, there is a fixed
overhead of around 5KB per article, giving a total memory requirement of around 35KB. So if you set
the PresentationArticleCache's maxSize property to 10000 documents, the cache may require
up to 350 MB of memory.

The following sections contain some basic items of useful information about each of the object caches
listed on the escenic-admin Performance Summary page. The following information is provided
about each cache:

• The cache component name. This is the name you use to locate the cache in the component
browser (although the easiest way to find it is just to click the cache's link on the escenic-admin
Performance Summary page).

• The cache configuration file name. This is the file you need to create or edit to make permanent
changes to the cache configuration. Global Content Engine cache configuration files may be added
to one or more of your configuration layers. For information about configuration layers, see section

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 48

4.3. Web application cache configuration files must be added to the web application's WEB-INF/
localconfig folder.

• Typical object size. You need this to work out how much memory the cache will use when it is full.

6.2.1 Global Caches

The caches described in the following sections are the global caches displayed on the escenic-admin
Performance Summary page. Other global caches may appear on this page if plug-ins have been
installed.

6.2.1.1 AgreementCache

Cache component name

/neo/io/content/cache/AgreementCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/AgreementCache.properties

Typical Average Object Size

1Kb.

6.2.1.2 ArticleListCache

Cache component name

/neo/io/content/cache/ArticleListCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/ArticleListCache.properties

Typical Average Object Size

1Kb.

6.2.1.3 ArticleSourceMap

Cache component name

/neo/io/content/cache/ArticleSourceMap

Cache configuration file

configuration-layer-root/neo/io/content/cache/ArticleSourceMap.properties

Typical Average Object Size

1Kb.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 49

6.2.1.4 ArticleXmlCache

This cache is not used.

6.2.1.5 CatalogCache

Cache component name

/neo/io/content/cache/CatalogCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/CatalogCache.properties

Typical Average Object Size

1Kb.

6.2.1.6 ExternalContentCache

Cache component name

/neo/io/content/cache/ExternalContentCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/ExternalContentCache.properties

Typical Average Object Size

1Kb.

6.2.1.7 LayoutCache

Cache component name

/neo/io/content/cache/LayoutCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/LayoutCache.properties

Typical Average Object Size

1Kb.

6.2.1.8 ObjectCache

Cache component name

/io/api/ObjectCache

Cache configuration file

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 50

configuration-layer-root/io/api/ObjectCache.properties

Typical Average Object Size

1Kb.

6.2.1.9 PublicationCache

This cache's maxSize should be set to a large enough value to ensure that it never needs to be
flushed. (that is, large enough to hold references to all sections of all publications).

Cache component name

/neo/io/content/cache/PublicationAttributeCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/
PublicationAttributeCache.properties

Typical Average Object Size

1Kb.

6.2.1.10 ReferenceEntityCache

Cache component name

/neo/io/content/cache/ReferenceEntityCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/ReferenceEntityCache.properties

Typical Average Object Size

1Kb.

6.2.1.11 RelationshipCache

Cache component name

/io/api/RelationshipCache

Cache configuration file

configuration-layer-root/io/api/RelationshipCache.properties

Typical Average Object Size

1Kb.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 51

6.2.1.12 SectionCache

This cache's maxSize should be set to a large enough value to ensure that it never needs to be
flushed (that is, large enough to hold references to all sections of all publications).

Cache component name

/neo/io/content/cache/SectionCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/SectionCache.properties

Typical Average Object Size

1Kb.

6.2.1.13 SectionParameterCache

Section parameter caching can be disabled by setting the property parameterCache to 'false' in
neo/io/managers/SectionManager.properties. In production this property should aways
be set to true, which is the default. This property should set to be false in template development
environments, like this:

parameterCache=false

Cache component name

/neo/io/content/cache/SectionParameterCache

Cache configuration file

configuration-layer-root/neo/io/content/cache/SectionParameterCache.properties

Typical Average Object Size

1Kb.

6.2.1.14 SectionSourceMap

Cache component name

/neo/io/content/cache/SectionSourceMap

Cache configuration file

configuration-layer-root/neo/io/content/cache/SectionSourceMap.properties

Typical Average Object Size

1Kb.

6.2.2 Web Application Caches

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 52

6.2.2.1 PresentationArticleCache

Cache component name

/neo/xredsys/presentation/cache/PresentationArticleCache

Cache configuration file

webapp/WEB-INF/localconfig/neo/xredsys/presentation/cache/
PresentationArticleCache.properties

Typical Average Object Size

Very variable, very publication dependent, but often somewhere between 20 and 40Kb.

6.2.2.2 PresentationListCache

Cache component name

/neo/xredsys/presentation/cache/PresentationListCache

Cache configuration file

configuration-layer-root/neo/xredsys/presentation/cache/
PresentationListCache.properties

Typical Average Object Size

1Kb.

6.2.2.3 PresentationPoolCache

This cache's maxSize should be set to a large enough value to ensure that it never needs to be
flushed.

Cache component name

/neo/xredsys/presentation/cache/PresentationPoolCache

Cache configuration file

configuration-layer-root/neo/xredsys/presentation/cache/
PresentationPoolCache.properties

Typical Average Object Size

1Kb.

6.2.2.4 PresentationSectionCache

This cache's maxSize should be set to a large enough value to ensure that it never needs to be
flushed.

Cache component name

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 53

/neo/xredsys/presentation/cache/PresentationSectionCache

Cache configuration file

configuration-layer-root/neo/xredsys/presentation/cache/
PresentationSectionCache.properties

Typical Average Object Size

1Kb.

6.3 Distributed Caching
In a multi-server installation, each server running the Content Engine has its own set of caches,
and all these caches must be synchronized with each other to some extent. Specifically, whenever
a change is made that can potentially cause an item in a cache to become invalid, that change must
be reported to all servers, so that the appropriate caches can be checked and the invalid item can be
removed, if necessary. The basic mechanism is that the Content Engine generates an event each time
a potentially cache-invalidating change is made. At the same time, the Content Engine also listens for
such events generated by other Content Engine instances, and when it receives such an event, checks
the appropriate cache and if necessary, removes the invalid item.

There are, however, two ways to set up distributed caching:

In a typical multi-server installation, different servers have different functions. There are two basic
server types:

Publishing servers
A publishing server is a 'back-end' server used by editorial staff to create and modify publication
content using Content Studio.

Presentation servers
A presentation server is a 'front-end' server used to serve publication content.

As a general rule, therefore, a publishing server is a change-generating server, and a presentation
server is not. This is, however, not always the case, since some publications include functionality that
enables "reader participation" of one kind or another. If the Forum plug-in is installed, for example,
then presentation servers will also be change-generating servers.

For multi-server setup, you should make sure to set the escenic.server system property on all
your Content Engine instances. Each Content Engine instance should have this property set to its
own host name or IP address.

6.3.1 DatabaseEventManager Service

This service is responsible for the communication among different escenic content engine servers. You
can find it here,

configuration-layer-root/io/api/DatabaseEventManager.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 54

This page also lists some performance metrics along with the properties of this component. If this
service does not run properly then your multi-server setup will not work. You can check the health of
this service from Home > View Services page in escenic-admin.

6.3.1.1 Standalone Database

It is possible to use different database for DatabaseEventManager. What you need is to create another
ContentManager with your different read and update connectors, collectors and throttle services and
then set this ContentManager to the DatabaseEventManager.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 55

7 Bootstrapping

By default, when the Content Engine is started, all its caches are empty. In a test or development
environment, where activity is usually very low, this is not a problem. For a production system running
a busy site, however, the level of requests can be so high as to completely cripple the site if all requests
have to be fully processed rather than served from the cache. For this reason, the Content Engine
includes an InitialBootstrapper component that can be used to protect the Content Engine from
traffic during start-up, allowing it to prime the caches with frequently-requested pages before it is
required to respond to real requests.

The InitialBootstrapper component works by:

• Intercepting incoming requests and returning HTTP 503 responses (Service Unavailable).

• Simultaneously submitting a series of dummy requests for frequently requested pages, thereby
priming the caches with content that will enable fast responses to many requests when the
bootstrap sequence is completed.

Bootstrapping is initialized on a per-publication basis by setting the bootstrapOnStartup
parameter in each publication's feature resource. The bootstrapOnStartup parameter allows
you to specify the individual sections of a publication that are to be bootstrapped. For a detailed
description, see Escenic Content Engine Resource Reference, section 6.6 .

Details of how the InitialBootstrapper component carries out the bootstrap operation
can be controlled by setting properties in the configuration-layer-root/neo/io/content/
InitialBootstrapper.properties configuration file, described in the following section.

7.1 InitialBootstrapper
InitialBootstrapper inherits properties from:

• java.lang.Object

It also has the following properties of its own:

secondsToWait (read/write)
int

The number of seconds that the InitialBootstrapper should wait before trying to load the
publications. Note that this time should include the time it takes from Escenic components
loading to the application server being ready and accepting requests. If this value is too low,
then requests may be stopped by the server, and the component will fail. If this value is too high,
then the startup time of Escenic might appear to be longer than nessecary. It is by default set to
wait 60 seconds. It is better that this value is too high rather than too low.

timeoutSeconds (read/write)
int

The number of seconds to try retrieving a publication. By default, if a publication has not
finished bootstrapped within 30 seconds, it will continue to the next publication.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 56

threadCount (read/write)
int

the number of simultaneous threads to use when bootstrapping. Typically this should be set to
the same number of processors

articlesToRetrieve (read/write)
int

The number of articles to retrieve from the front page. Typically, the default value of "1" is
satisfactory. The bootstrapper will keep trying to retrieve articles until it successfully loads this
number of articles from the front-page.

articlesToAttempt (read/write)
int

The number of articles to attempt to retrieve from the front page. Typically, the default value of
"5" is satisfactory. This means that after 5 failed attempts it will stop trying to retrieve articles
from the section in question, and move on to the next.

depth (read/write)
int

The default depth to try to probe when going throught the section tree. By default, a
publication's top section along with its children are probed, i.e. the depth is set to 2. Setting
this property has effect when the bootstrapOnStartup is set to the keyword true. This value can
be overridden on a per-publication basis, by specifying a number in the bootstrapOnStartup
feature.

failureThreshold (read/write)
int

The number of failures that are to be tolerated in a publication. By default, the bootstrapper will
stop accessing a publication if it fails 5 sections.

token (read-only)
String

The value of the token that the initial bootstrapper will use as a query parameter when issuing
the HTTP requests.

bootstrappedPublications (read-only)
String

A list of publications that were bootstrapped when the bootstrapper was run.

bootstrapped (read/write)
boolean

Wether or not all publications have been bootstrapped. This value may be set to true before or
during bootstrapping, and any running bootstrap threads will stop their work. This property
must be false in order for bootstrapping to start. When bootstrapping is finished, this property is
automatically set to true. By default, this property is false upon startup, and after bootstrapping,
will be true.

threadRunning (read-only)
boolean

true if any bootstrapping is happening right now, false otherwise. Simply an indicator of wether
or not the bootstrapper is active.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 57

8 Throttling

The Content Engine has a a number of throttle services that you can use to limit the number of
concurrent requests that various parts of the system will attempt to handle. Once the specified
threshold is reached, requests to the overloaded part of the system will be refused.

The following throttle services are available:

WebServiceThrottle
Limits access to the Content Engine web service used by Content Studio.

DatabaseUpdateThrottleService
Limits the number of concurrent database updates.

DatabaseReadThrottleService
Limits the number of concurrent database reads.

JspThrottleService
Limits the number of concurrent page requests.

The throttle services are all enabled by default and set up with default configurations. You should not
switch the throttle services off in a production environment, as overload situations are then likely to be
handled in an unpredictable manner. You can, however, configure the throttle services by editing the
appropriate files in one of your configuration layers (see chapter 4).

All the throttle services are instances of the ResourceThrottle class, and are configured by setting
ResourceThrottle properties. The most important property you can set is maximumConcurrent,
which determines the maximum number of concurrent requests that will be handled.

For WebServiceThrottle, DatabaseUpdateThrottleService and
DatabaseReadThrottleService, maximumConcurrent is set by default to 100, which is a
relatively high value that can most likely be left unmodified. Database accesses should normally
be controlled by the database system itself, so DatabaseUpdateThrottleService and
DatabaseReadThrottleService can be seen as "failsafe" devices that will only ever be needed
if something is badly configured elsewhere. Similarly, usage of the Content Engine's web service
is unlikely under normal operation ever to reach a level of 100 concurrent accesses, even in large
installations, so if this limit is ever reached, it is probably a sign that something is wrong.

JspThrottleService, on the other hand, is not just a failsafe device, it is vital to ensuring that
the Content Engine handles periods of high activity in a controlled manner. Moreover, the optimum
setting for maximumConcurrent is entirely installation-dependent, and must be based on experience
and testing. For this reason, the default value is deliberately set set to a low value of 10. There is no
sensible default: you must observe the Content Engine's performance and arrive at the optimum
setting by trial and error.

In order to find out the optimum settings in a production environment, you need to examine
performance numbers, and the number of HTTP 503 messages returned. The escenic-admin
application's Performance summary option displays a page of performance data including an
Activity Monitors section containing throttle activity data (see section 2.1.4.3).

The Current Usage column in the Activity Monitors section shows the current number of
concurrent accesses. Above the Current Usage section, the /neo/io/reports/HitCollector
entry in the Load Averages section shows the request load reaching the Content Engine. The

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 58

Failures field shows how many requests have failed or been rejected. If failures are being recorded by
the /neo/io/reports/HitCollector, and you see that incrementations of this value coincide with
high Current Usage values for the JspThrottleService, then maximumConcurrent is probably
set too low.

All the throttles are implemented using the ResourceThrottle class, and therefore have the same
set of configuration properties, described in the following section.

8.1 ResourceThrottle
ResourceThrottle inherits properties from:

• java.lang.Object

It also has the following properties of its own:

maximumConcurrent (read/write)
int

The maximum number of concurrent usages of a specific resource. This number decides how
many simultaneous clients can use the resources at a time.

availableCapacity (read-only)
int

The number of free resources that this throttle attempts to govern. This number changes every
time someone checks in a resource, or the maximumConcurrent value changes.

overloadMessage (read/write)
String

The message that clients can use when handling the case in which the server has been
overloaded. The hard-coded default message is "Resources Exhausted".

activeResources (read-only)
Collection

A list of string representations of all active resources. If a resource has become unavailable for a
prolonged period of time, this will show what the resource is being used for.

serviceRunning (read-only)
boolean

Whether or not the service is running. This flag is modified by doStartService and
doStopService.

serviceEnabled (read/write)
boolean

Whether or not the service is enabled. If the service is disabled, no log of activity will be kept,
and no attempts to use resources (checkout) will fail.

8.2 Per-Publication Throttling
By default, the same throttle controls access to all publications. It may be, however, that you want to
isolate the publications from one another, so that a traffic spike on one publication does not affect the
performance of other publications. You can do this by defining additional throttle service components
like the default /neo/io/services/JspThrottleService component. You can then:

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 59

• Configure different publications to use different throttle services.

• Set the maximumConcurrent property individually for each publication.

Note that doing this does not increase the total capacity of the server. If maximumConcurrent was
already set to its optimum value in a single throttle set-up, then this number of concurrent requests
must be shared out between the throttle services in the new set-up.

To set up additional throttle services:

1. Create a .properties file for each throttle service you want to create in one of your
configuration layers. You might, for example, create a file called configuration-layer-root/
throttles/MyThrottle.properties:

2. Add the following class definition.

$class=neo.util.ResourceThrottle

3. Add the additional property settings you require. For example:

maximumConcurrent=5

4. Since you've added new throttle services, you will probably need to reduce the
maximumConcurrent setting of the default throttle service (/neo/io/services/
JspThrottleService) accordingly. To do this, edit configuration-layer-root/neo/io/
services/JspThrottleService.properties. (You may need to create this file if it does
not already exist in the configuration layer.)

5. For every publication web application that is to use the new throttle service, you must edit the
WEB-INF/web.xml file. Open the file, find the ECETimerFilter definition and add a new
parameter definition as a child of the init-param element:

<init-param>
 <param-name>throttle</param-name>
 <param-value>/throttles/MyThrottle</param-value>
</init-param>

The throttle parameter must be set to the name of the new throttle service (/throttles/
MyThrottle in this case).

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 60

9 Performance

This chapter is intended to provide you with a starting point for identifying and solving the problems
involved in ensuring that your Escenic site performs and scales well. The information it contains is
general in nature, but wherever numbers are discussed, they are based on an assumption that the site
will need to serve around 50 000 simultaneous users.

The architecture shown in the following diagram should cater for such numbers and includes all the
components discussed in this chapter.

Feeds

Web Studio

Content Studio

Editor 2Editor 1

NASDB 2DB 1

Pres 4Pres 3Pres 2Pres 1

cache2cache1

HW load balancer

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 61

9.1 Scalability
Ensuring the scalability of a typical Escenic site is fundamentally a matter of correctly caching the
content. It involves:

• Correctly tuning the Content Engine caches (see chapter 6).

• Running a distributed memory cache (memcached) to ease the load on the databases (see Escenic
Content Engine Installation Guide, section 4.3)

• Running a well-configured cache server, such as Akamai, Squid or Varnish in front of the
application servers.

You will need:

• 6-8 engine hosts

• 2 database hosts

• Some kind of high availability solution for the file system (using HA proxy and virtual IPs, for
example)

• 2-4 cache servers (multiplied by two if you are using Squid 2.x).

9.2 Web Server Set-up
The cache servers will in most cases also run a web server of some kind. Most of the advice given below
is applicable in general terms whatever web server you use, but the specific examples are based on the
Apache web server.

9.2.1 Web Server Tuning

Your web server needs to be tuned before going into production. The standard configuration included
with the Apache distribution (or with our OS software package) is not optimised for high load web sites
and you will therefore need to modify it. It is particularly important to configure the mpm_common
worker module for production use. Be sure to read and understand the documentation for this module
and then continue to these more general Apache performance guides:

• http://httpd.apache.org/docs/2.2/misc/perf-tuning.html

• http://www.devside.net/articles/apache-performance-tuning

Do not use the prefork MPM worker, use the multi-threaded worker instead.

The Apache worker is set at compile time. Thus, if you have compiled it from source, check your
build (configure) options to be sure the multi-threaded worker is selected. If you have installed
Apache from RPM/DEB packages, you can usually use rpm -qa | grep -i apache or dpkg -l
"*apache*mpm" to make sure that the high speed worker is being used.

This example shows how to configure the Apache worker for production use.

worker MPM
<IfModule worker.c>
We could increase ServerLimit to 64 and ThreadLimit/MaxClients to 8192,
but be aware of the OOM of Death!!

http://akamai.com
http://squid--cache.org
http://varnish.projects.linpro.no
http://en.wikipedia.org/wiki/High_availability
http://haproxy.1wt.eu/
http://en.wikipedia.org/wiki/Virtual_IP_address
http://httpd.apache.org/
http://httpd.apache.org/docs/2.2/mod/mpm_common
http://httpd.apache.org/docs/2.2/misc/perf-tuning.html
http://www.devside.net/articles/apache-performance-tuning

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 62

initial number of server processes to start
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#startservers
StartServers 3
ServerLimit 32

minimum number of worker threads which are kept spare
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#minsparethreads
MinSpareThreads 512

maximum number of worker threads which are kept spare
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#maxsparethreads
MaxSpareThreads 1024

upper limit on the configurable number of threads per child process
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#threadlimit
ThreadLimit 4096

maximum number of simultaneous client connections
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#maxclients
MaxClients 4096

number of worker threads created by each child process
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#threadsperchild
ThreadsPerChild 128

maximum number of requests a server process serves
http://httpd.apache.org/docs/2.2/mod/mpm_common.html

#maxrequestsperchild
MaxRequestsPerChild 10000
</IfModule>

Make sure that you have a good understanding of the MaxKeepAliveRequests and
KeepAliveTimeout parameters. The following values:

MaxKeepAliveRequests 1000
KeepAliveTimeout 5

work well in many production sites today. However, your needs may be different and you should
therefore be careful when setting these parameters.

9.2.2 Why You Need a Web Server

It might seem tempting to remove the web server in order to simplify your server setup, especially
since some cache servers (such as Varnish) offer powerful URL rewriting facilities, easy manipulation
of HTTP headers and advanced access control lists.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 63

However, production sites without a web server are rare, and if you plan to offer personalised sites
(with user login, etc.), session binding is required. Some cache servers (such as Oracle Web Cache)
have built-in session binding but others, such as Varnish, do not. Therefore, web servers are likely to
be needed for the foreseeable future. For more on session binding, see section 9.8.1.

9.3 Database Performance
Database performance has an indirect impact on page rendering time and the responsiveness of
the Content Engine as a whole. The effect of the database on overall performance is reduced by the
Content Engine's caching strategy, but it is not eliminated. If a performance problem arises that
appears to originate in the database, then it may be necessary to examine the database queries being
executed in order to locate the "problem" SQL statements.

9.3.1 Identifying Slow Transactions

The Content Engine measures the time taken to execute every SQL statement. The escenic-admin
application's Performance summary option (see section 2.1.4) displays a page of performance data
that includes the average and peak access times for database engine queries and updates:

Database Engine Queries:
 Since last sample:
 2 db queries;
 effective 0.00Hz;
 average 4ms; peak 6ms;
 load 0.00 (delta -0.00);
 0 failures;
 Total:
 44 db queries;
 average 32ms.

Database Engine Updates:
 Since last sample:
 862 db transactions;
 effective 1.58Hz;
 average 2ms;
 peak 27ms;
 load 0.00 (delta -0.00);
 0 failures;
 Total:
 14148 db transactions;
 average 8ms.

These figures give you some idea of how the database is performing: a well-performing database will
usually have an average access time of around 10 milliseconds for both queries and updates.

If a database operation takes more than 10 seconds (10,000 milliseconds), the Content Engine logs the
transaction with an ERROR message in the log. The message contains information about the internal
Content Engine transaction being performed, and may in some cases contain the actual SQL query
being executed. If your database regularly has peaks of over 10 seconds, you should look in the log file
to see what kinds of transactions are causing the problems.

The 10 second threshold for logging database transactions as errors is not fixed: you can set the
threshold higher or lower by configuring the /neo/io/managers/ContentManager component.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 64

To change the error threshold for read transactions, set the readThreshold property. To change the
error threshold for write transactions, set the updateThreshold property.

You can reset these properties at run time using the escenic-admin application's Component
browser option (see section 2.1.15). In this way you can easily set the properties to catch the peak
access times currently being reported by the Performance summary option and find out what
operations are causing the problems.

9.3.2 Troubleshooting Slow Transactions

If you find what looks like a particularly slow SQL transaction, you can configure the Content Engine
to generate additional diagnostic information. To do this, use the escenic-admin logging level editor
(see section 2.1.11) to set the logging category com.escenic.sql.Logger to one of the following
values:

INFO
Logs the SQL statements themselves before they are executed.

DEBUG
Additionally logs the positional parameters of the prepared statements, as they are set.

You can now see all the SQL statements executed in the log, but you still don't know which particular
statement is slow, nor do you necessarily know exactly how or why the individual statements come to
be executed. You may have suspicions regarding some of the statements, however. You can set up the
connection wrapper to dump the call stacks of these statements to the log. You should then be able to
find from the stack traces which template files are responsible for the statements.

To generate stack dumps in this way you need to set the /neo/io/connector/DebugConnection
component's stackdumpRegExp property to a regular expression that matches the SQL
statement(s) you are interested in. If, for example, you are interested in all statements involving the
ArticleMetaContent table, then you can set it to /ArticleMetaContent/i (the "i" at the
end indicates that the expression is case insensitive). Then any SQL statement containing the string
"articlemetacontent" will trigger a stack dump of the current thread to standard error.

You can permanently set the logging level for com.escenic.sql.Logger by editing your
trace.properties file (see chapter 11 for details).

9.3.3 Getting the Database to Scale

The real limitation governing the scalability of most read-heavy sites is the number of available
database handles. Scaling up the application server layer does not make sense if the database can
only deal with a limited number of read/write handles. Some high-end Oracle cluster solutions may
possibly help solve this problem, but MariaDB clusters cannot be used since they do not support sub-
queries. Standard master/slave configurations are therefore the only option. As far as Escenic is aware,
all current Content Engine sites are based on master/slave database configurations, regardless of what
database they use.

It is important to remember that both the read and write connection pools in ECE must be
configured to work on the master database instance. The slave databases are for data
redundancy (standby backup) only, and should not be used to serve requests as this may cause
unforeseen behaviour.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 65

You are recommended to install memcached on each of your engine-hosts. memcached acts as
a layer on top of the most important Content Engine cache, /neo/xredsys/presentation/
cache/PresentationArticleCache, and significantly reduces the number of database read
operations. See Escenic Content Engine Installation Guide, section 4.3 for details of how to
install memcached on your engine-hosts.

The relationship between memcached and in-memory caches

The Content Engine uses memcached as a "level 2" cache for the presentation layer. When the
templates ask the presentation layer for an article, it first checks its in-memory cache - even if
memcached is in use. If the object isn't found in the in-memory cache, then memcached is asked. If
the object isn't available there either, then the object is loaded from the database and copied to the in-
memory and memcached caches. When memcached is in use, some cache-related activities affect both
the in-memory and memcached caches, while other activities affect only the in-memory cache. For
example, functional activities such as adding and removing a specific item from a cache are propagated
to memcached, whereas operational activities such as flushing the cache or setting the cache size, are
not propagated to memcached.

9.4 The TCP/IP Stack
The TCP/IP stack also imposes scalability limitations. How many simultaneous open TCP connections
can your front-end servers handle, and how many open connections can be handled by the back-end
components supporting them? Each layer in your software stack communicates with the layer below
via TCP: load balancer -> cache server -> application server -> database/file system. There need to be
sufficient connection handles available at each level to prevent bottlenecks occurring.

Each connection made to the load balancer results in a corresponding request to a cache server, so
you need sufficient connection handles here to handle whatever maximum number of simultaneous
requests you have decided upon. The cache servers should respond directly to a large number of
requests, so you will need a much smaller number of connection handles between the cache servers
and the application servers. Similarly, some requests will be responded to directly by the application
server, so an even smaller number of connection handles is required for communication between the
application server and the database/file system.

In order for your installation to perform well, the relationships between the number of connection
handles available at each level in your server architecture must reflect the actual requirements of the
traffic reaching your site.

9.4.1 Caching Servers

For the caching servers in the front layer of your server architecture you need have a clear
understanding of TCP connection scalability issues.

The first thing you may notice as the load on your system increases, is that the cache server process
runs out of file handles (unless its start script increases the right kernel parameter). This is because the
operating system uses one file handle for each connection, and on many systems the default number
of handles a single user process is allowed to create is 1024. This problem can be temporarily fixed
with the ulimit -u command (on Linux and FreeBSD). To fix it more permanently you need to
edit /etc/sysctl.conf (on Linux and FreeBSD) or /etc/system (on Solaris). You can set the
maximum number of file handles up to several hundred thousand, so there is no real limitation here.

http://memcached.org

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 66

The operating system set up TCP connections between a local port and an anonymous port on the
requesting host:

cache01:2323 -> otherhost:1237

Port numbers are defined in the TCP protocol as an unsigned 16-bit number which gives a maximum
of 65535 ports. The local port number can, however, be re-used for connections to different hosts:

cache01:2323 -> otherhost:1237
cache01:2323 -> yetanotherhost:4545

This means that the maximum theoretical number of connections a cache server can handle is:

(65535 - reserved-ports) * incoming-ip-addresses

where reserved-ports is the number of ports reserved for system services by the operating system
(usually 1024).

For this to work well, the load balancer in front of the cache must be transparent: that is, it must
supply the IP address of the request source and not its own IP address.

For example, if three users are visiting your web site:

user1:2213 -> load-balancer:80 -> cache01:80
user2:1212 -> load-balancer:80 -> cache01:80
user3:5333 -> load-balancer:80 -> cache01:80

then ideally, cache01 should see the IP addresses of the requesting clients (user1, user2 and
user3) rather than the IP of the load balancer. Your cache server will then be able to handle as many
TCP connection as your load balancer can pass on (given that your operating system kernel manages to
allocate and recycle enough TCP connections fast enough).

If this is not possible then an alternative (but less satisfactory solution) is to increase the maximum
number of possible connections by adding additional interfaces (and corresponding IP addresses) to
the load balancer and/or the cache server.

9.5 Searching with Solr
For guidance on how to scale the Solr search engine in a multi-host environment, see chapter 5.

9.6 Avoiding Single Points of Failure
A Content Engine's NFS server are potential single points of failure: if it goes down and you haven't
done anything to prevent it, your web site will go down too. The only way to solve this problem is to
duplicate these components: you have the same software installed on two hosts, but only run it on one
of them, keeping the other ready as a backup. A heartbeat daemon (see http://haproxy.1wt.eu) is
used to monitor the availability of the service and, if it goes down, start the service on the backup host.

This heart beat/fail over solution should also include a virtual IP address for the host running the
critical service. All users of the service access it via the virtual IP address. If the service's primary
host goes down and the heart beat starts the service on a backup host, the virtual IP address is moved

http://haproxy.1wt.eu

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 67

from the primary host to the backup host. This ensures that no configuration changes are needed to
any of the components using the service. Any components using the service at the time of failure will
lose all current transactions and connections, but operation will resume on the backup host for any
subsequent requests/transactions.

9.7 Optimizing the Operating System Kernel
A newly-installed operating system is not optimized for any particular use: its default settings are
designed to cater for a wide range of different uses. For a server that is dedicated to performing a
specific task, therefore, it makes sense to adjust the operating system's settings in order to maximize
the performance of the software installed on it.

You can optimize the Linux kernel by editing /etc/sysctl.conf, and you can list the current kernel
settings by entering:

sysctl -a

You can find the names of all the possible kernel parameters you can set by browsing the /proc/sys
tree in the file system. The kernel parameter net.ipv6.route.max_size, for example, corresponds
to the file /proc/sys/net/ipv6/route/max_size.

For further information, see your operating system documentation, starting with the sysctl and
sysctl.conf man pages.

Here is an example showing how to tune the Linux kernel (tested on 2.6.24) for running an Apache
web server and Varnish cache server. Some of the settings here may in fact be redundant, but
nevertheless, this configuration is known to work and has a proven track record of serving several high
traffic web sites:

net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=4096 87380 16777216
net.ipv4.tcp_wmem=4096 65536 16777216
net.ipv4.tcp_fin_timeout = 3
net.ipv4.tcp_tw_recycle = 0
net.core.netdev_max_backlog = 30000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn = 262144
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans = 262144
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syn_retries = 2

9.8 Highly Interactive Sites
Highly interactive sites that incorporate social networking functionality, such as sites based on the
Viz Community Expansion, have additional requirements. They can contain large amounts of user-
generated information, and displayed pages frequently contain personalized and dynamic elements. it
is therefore necessary to consider performance in the following additional areas:

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 68

• Session binding

• Edge Side Includes (ESI)

If you are implementing a straightforward content-based site that does not offer large-scale user
interaction, you can ignore this section.

9.8.1 Session Binding

For any Content Engine site that allows visitors to create user profiles and log in, you are
recommended to make use of Apache's mod_proxy_balancer for providing sticky sessions and load
balancing.

Be aware that you cannot use application server clustering (that is, sharing sessions between your
application servers) since this requires that all objects written to the Session object are serializable.
Currently, this requirement is not met by all Content Engine objects, and you therefore need to bind
all sessions to one specific application server. You can either do this in your web server (for example,
Apache's mod_proxy_balancer, as mentioned above) or alternatively in some cache servers, such as
Oracle Web Cache.

9.8.2 Edge Side Includes

Edge Side Includes (ESI) is an XML-based language (and a W3C standard) that allows web page and
template developers to include caching requirements in their page mark-up. This makes it possible to
establish a differential caching policy that caches different parts of a page for different lengths of time.
A page is essentially broken up into fragments with different caching policies. Some highly dynamic
fragments (the number of messages in a user's inbox, for example) may be cached for a very short time
or not at all, while parts that are likely to change less often (such as a news article or blog entry) can be
cached for much longer. Big IP, Varnish, Akamai, Oracle Webcache and Squid 3 all support ESI.

The basic idea is that the application developer, who is the person best placed to know how long
a given fragment should be cached, sends that information to the cache server in the form of ESI
directives. With Varnish at least, no additional configuration is required to make the cache server
respect ESI directives. This example shows how to set a cache time of one minute on a fragment.

<%@ taglib uri="http://jakarta.apache.org/taglibs/response-1.0" prefix="response"%>
<response:addHeader name="Cache-Control">
 s-maxage=60
</response:addHeader>

Template developers need to be aware that using ESI imposes constraints on how they structure their
templates. They must also be sure to set the s-maxage HTTP header in entry point JSPs (the ones that
directly respond to HTTP requests rather than being included by other JSPs).

9.8.3 User Registration

If you expect large numbers of users (say 10 000) to register on your site within a very short space of
time (say 5-10 minutes), then you will need to establish some kind of queueing mechanism to cope
with this.

http://www.oracle.com/technology/products/ias/web_cache
http://www.w3.org/TR/esi-lang
http://jakarta.apache.org/taglibs/response-1.0

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 69

9.9 How to Test
In order to know whether or not your installation is likely to meet your needs you need to test it. The
following sections provide some advice on testing and useful test tools. Three kinds of testing are
considered:

• Smoke testing (initial tests intended to give you a general idea of how your set-up is performing)

• Functional testing (does your set-up actually do all the things it's supposed to do?)

• Load testing (will your set-up function satisfactorily under the maximum loads you expect your site
to experience?)

9.9.1 Smoke Testing

A good starting point is to verify that the site is actually delivering content and to measure how fast it
does this over time. You can do this by repeatedly accessing the site using the wget command and

• Observing the effect on operating system resources using commands such as top, vmstat and
iotop

• Observing how the Content Engine responds using the performance summary pages in the
escenic-admin web application (see section 2.1.4)

wget downloads a requested page with all its linked resources, such as images, style sheets and
Javascript files. You should always call it several times when you are testing, in order to even out
variations in performance. The time taken to respond to a single request cannot be trusted, since it
may have arrived at an exceptionally good or bad point in time: when the caches are being filled up,
when the connection to the database needs to be re-established or when Java is performing garbage
collection. You should therefore submit the command in a loop that executes it a number of times, for
example:

$ for i in $(seq 10); do
 time \
 wget -p \
 --delete-after \
 -o /dev/null \
 http://mysite.com/
done

You should repeat this test at intervals to see the effect of the changes you make during tuning.

This command can also be used to fill up the front end caches after they have been flushed (for
instance after a new deployment of your portal software).

9.9.2 Functional testing

We recommend using JMeter for functional tests. You can use it to write scripts that simulate typical
user activities. We do not, however, recommend JMeter for load testing. It does not put enough strain
on an installation to verify that it can sustain real, high volume traffic.

9.9.3 Load testing

For load testing we recommend two different tools:

http://jakarta.apache.org/jmeter/

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 70

• Siege for testing straightforward read operations. Siege is multi-threaded and can exert enough
pressure on your site to quickly reveal its weaknesses.

Here is an example siege command for starting 100 sessions on an Escenic Community
Expansion site, and creating 50 blogs in each session:

$ $ siege -c 100 \
 -r 50 \
 -f siegedata-create-blog \
 -H "Cookie:...."

The actual HTTP request sent to the browser is read from a siege data file (siegedata-create-
blog in the example above). These files have a very simple format, for example:

http://mysite.com/community/addStory.do POST
 parameterOne=valueOne¶meterTwo=valueTwo...

They can easily be constructed by carrying out an operation in the browser and then using a
debugger such as Firefox's Firebug to capture what is actually being sent to the server.

• httperf for more testing more complex scenarios involving user input. httperf allows you to write
session scripts that simulate the GET, PUT, POST and DELETE operations various kinds of user
activity would result in. Furthermore, it can replay your Apache access logs, giving your tests real
user traffic patterns as opposed to looping through a list of URLs sorted in alphabetical order.

Here is an example that shows httperf creating 1000 connections and submitting 20 requests
over each connection, establishing 100 connections per second:

$ httperf\
 --hog \
 --server myserver.com \
 --num-conn 1000 \
 --ra 100 \
 --num-calls=20

See the httperf man pages for a detailed explanation of the parameters.

Once you have built up a library of tests, you can create a shell script to execute them all
simultaneously. For example:

#! /usr/bin/env bash
create_blog.siege &
commit_poll_vote.siege &
login_user.siege &
replay_the_access_log.httperf &

http://www.joedog.org/index/siege-home
http://www.hpl.hp.com/research/linux/httperf/

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 71

10 Backup

There are three items that need to be backed up in order to have a full backup of an Escenic
installation:

• The database server

• Various files in the file system

10.1Database Server
All publication content other than images and media files are stored in the database. Database backups
should be carried out every day, ideally at a time of day when little new content is created.

For information on how to carry out and verify database backups, see the documentation for your
particular database server.

Note that if your database server needs to be shut down during backups, then your publications will be
partly inaccessible to users. Partly inaccessible means:

• No updates will be possible

• Any previously accessed pages that have not been removed from the cache will be accessible to
readers; others pages will not be accessible.

Most database servers do, however, support online backup.

10.2File System
The following kinds of file system files need to be backed up:

• Data files

• Content Engine configuration files

• Publication web applications

• Content Engine program files

There are many utilities available, both commercial and open source, for carrying out file system
backups. You can either use one of these or write your own backup script.

10.2.1 Data Files

The data files that need to be backed up consist of publication images and media files, which are not
stored in the database. The location of these files is defined by the ServerConfig component's
filePublicationRoot property. Use the escenic-admin application's Component browser
option (see section 2.1.15) to see this property.

All this folder's sub-folders and files should be backed up. Backups should be performed on the same
schedule as the database, since the files stored here are closely related to database content.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 72

10.2.2 Content Engine Configuration Files

Depending on your configuration set-up you may have one or more configuration layer on each server
that needs to be backed up. For further information about configuration layers and their locations, see
chapter 4.

You are strongly recommend to keep all your configuration layers in some kind of version control
system, so that you can easily track what changes have been made and revert to earlier versions if the
system should become unstable after configuration changes. If you do this, then you will not need to
keep backups of these files (but you will, of course need to keep backups of your version control system
repository).

Backups should be performed daily.

10.2.3 Publication Web Applications

The web applications that drive Escenic publications consist of a combination of template code (JSP
files) and various configuration files in the WEB-INF and META-INF folders, which also need to be
backed up. These applications are deployed on the application server by the Content Engine assembly
tool from a copy in the /opt/escenic/assemblytool/publications folder.

As with the Content Engine configuration files, you are strongly recommend to keep your publication
web applications in a version control system. If you do this, then you will not need to keep backups
of the deployed web applications, but you will need to keep backups of your version control system
repository.

10.2.4 A Simple Backup Script

Here is a very simple script that saves back up copies of a MariaDB database:

#! /bin/bash

dir=/var/backups/escenic

db backup
mysqldump ecedb | gzip -9 > $dir/$(date --iso)-ecedb.sql.gz

If you save it in /etc/cron.daily/ece, then it will be run every day, creating daily backups of your
databases.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 73

11 Logging

The Content Engine uses the Apache log4j utility to handle logging. log4j is very flexible: among
other things, it allows the logging level to be changed without restarting the Content Engine.

By default, the Content Engine outputs log messages to System.out, which means the application
server's log file. You can, however, change this (and many other log settings) by creating a
trace.properties file and adding it to your application server's classpath. An easy way of doing
this is:

1. Copy the supplied template trace.properties file from /opt/escenic/engine/classes
to the root folder of your common configuration layer (/etc/escenic/engine/common).

2. Edit the copied file (see section 11.1).

3. Most application servers have a folder whose contents are automatically added to the classpath.
Create a symbolic link to your trace.properties file in this folder. If you use Tomcat, for
example, you can make sure your trace.properties is added to the classpath by entering:

$ cd /opt/tomcat/lib/
$ ln -s /etc/escenic/engine/common/trace.properties

If you do this, then any changes you make to trace.properties will take effect the next time you
start the application server.

11.1Editing trace.properties
You can use the trace.properties file to configure all aspects of logging, including the following:

• Log file location

• Log file rotation

• Log file layout

• Logging levels

• Multiple log file generation

The following sections contain some hints on how to use trace.properties to achieve certain
objectives, but no more than that. For a full description of all the possibilities offered by log4j and
the trace.properties file format (which is complicated), see http://logging.apache.org/log4j/1.2/
manual.html and http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html.

11.2Log File Rotation
An application server can generate large numbers of log messages, so if no action is taken, log files can
grow unmanageably large. Log file rotation solves this problem by starting a new log file at fixed
intervals. You can either use a third party log rotation program or else set up trace.properties so
that the Content Engine starts logging to a new file periodically. You can define the period between log
files either by time (every 24 hours, for example) or by data volume (every x kilobytes).

http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 74

You can, for example, change the log file once a day by replacing this line in the default
trace.properties:

log4j.appender.FILE=org.apache.log4j.FileAppender

with this:

log4j.appender.FILE=org.apache.log4j.DailyRollingFileAppender
log4j.appender.FILE.DatePattern='.'yyyy-MM-dd

11.3Logging Level
Logging level determines how many messages the Content Engine outputs to the log file. For
general information about this, see section 2.1.11.

Logging level can be set in three different places:

1. In the trace.properties file. General, permanent logging level settings should be made here.

2. In the configuration layers. You can set special logging level settings for a particular component
in that component's .properties file. Any settings made here will override the general settings
in trace.properties and are permanent. For general information about configuration layers,
see chapter 4.

3. Using the escenic-admin application's View the logging levels option (see section 2.1.11).
Any settings made here will override settings made in trace.properties and settings made in
the configuration layers. The settings are, however, only temporary: they will disappear when the
Content Engine is restarted.

In a production environment you are recommended to set the general logging level to ERROR.

11.4Example Logging Set-up
You can use the following example trace.properties file as a basis for your own logging
configuration. Replace mycompany and MYCOMPANYLOG with suitable names of your own.

log4j.rootCategory=ERROR
log4j.category.com.escenic=ERROR, ECELOG
log4j.category.neo=ERROR, ECELOG
log4j.category.com.mycompany=ERROR, MYCOMPANYLOG

log4j.appender.ECELOG=org.apache.log4j.DailyRollingFileAppender
log4j.appender.ECELOG.File=/var/log/escenic/ece-messages.log
log4j.appender.ECELOG.layout=org.apache.log4j.PatternLayout
log4j.appender.ECELOG.layout.ConversionPattern=%d %5p [%t] %x (%c) %m%n

log4j.appender.MYCOMPANYLOG=org.apache.log4j.DailyRollingFileAppender
log4j.appender.MYCOMPANYLOG.File=/var/log/escenic/mycompany-messages.log
log4j.appender.MYCOMPANYLOG.layout=org.apache.log4j.PatternLayout
log4j.appender.MYCOMPANYLOG.layout.ConversionPattern=%d %5p [%t] %x (%c) %m%n

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 75

11.5Changing the Name of trace.properties
If you want to, you can change the name of the logging configuration file by specifying the system
property log4j.configuration. If you specify the property:

log4j.configuration=myserver-log4j.properties

then the Content Engine will look for its logging configuration in a file called myserver-
log4j.properties. This can be a useful means of changing the logging configuration for different
contexts (development, test, production, for example).

11.6Content Studio Thread Dumps
Occasionally, a situation can arise which causes Content Studio to freeze. If this situation arises,
Content Studio will generate a thread dump as a diagnostic aid. If your users experience this kind of
problem with Content Studio, you will probably be asked to submit one of these thread dump files to
Escenic support.

By default, Content Studio checks the event dispatch thread every 15 seconds. If the event dispatch
thread is busy twice in succession, then a thread dump file called Escenic-Content-Studio-
thread-dump.log is generated. It is written to the location defined by the java.io.tmpdir system
property (as defined on the machine where Content Studio is running).

You can change interval between checks by setting the
property.com.escenic.studio.thread.dump.interval property in the configuration-
layer-root/com/escenic/webstart/StudioConfig.properties configuration file. Specify the
required interval in seconds (as an integer).

You can disable this process by setting
property.com.escenic.studio.thread.dump.interval to -1.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 76

12 Monitoring

The escenic-admin web application contains a number of functions for monitoring various aspects
of Content Engine performance:

• Performance summary (see section 2.1.4)

• Top (see section 2.1.9)

• View JSP statistics (see section 2.1.12)

The Content Engine also provides support for monitoring via the Java Monitoring and
Management Console.

In addition, all the Content Engine's cache components are now JMX-enabled (JMX stands for Java
Management Extensions). This means that you can use any JMX client (such as jconsole, the
Java Monitoring and Management Console bundled with the Java runtime) to monitor cache activity.

If you use the /usr/local/bin/ece script to start and stop the Content Engine (recommended, see
Escenic Content Engine Installation Guide, section 3.17), then you can enable and configure
JMX support by setting the following parameters in /etc/escenic/engine/ece.conf:

enable_remote_monitoring
Set to 1 to enable JMX.

remote_monitoring_port
Specify the number of the port you want to use for monitoring the Content Engine.

If you do not use the /usr/local/bin/ece script, then you should set the
corresponding Java system parameters (com.sun.management.jmxremote and
com.sun.management.jmxremote.port). On Java 6 JMX is enabled by default, so
com.sun.management.jmxremote can be omitted.

When you run the JMX client you will need to enter the name or IP address of the host on which the
Content Engine is running and the number of the remote monitoring port you are using. If you use
jconsole, then you will find two Content Engine-related namespaces on the MBeans tab:

com.escenic.cache
This contains attributes and statistics for all Content Engine caches.

com.escenic.jvm
This contains Content Engine-related JVM statistics.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 77

13 System Properties

The Content Engine will use the system properties described below if they are specified.

The general method of setting system properties depends on which application server you use. Some
application servers allow you to set them as -D options in the application server startup command,
some read configuration files, some let you set system properties from an administration user
interface. Consult the documentation for your application server to find out the best way to set system
properties.

Some system properties are set by the Content Engine's ece start-up script, so if you use this script
to start the Content Engine, then you can also modify the settings of these properties by editing /
etc/escenic/engine/ece.conf. You should avoid setting system properties in both places,
since which setting will take precedence in such cases is application server-dependent.

The following descriptions indicate which system properties are set by the ece start-up script.

There are sensible defaults for all system properties, so they do not necessarily need to be explicitly set.

java.security.policy
Overrides the default java security configuration. Value: [some location of your
choice]/java.policy. The file java.policy should be copied to the file system of the
application server from ECE_CONFIG/security/

java.security.auth.login.config
Overrides the default java security configuration. Value: [some location of your
choice]/jaas.config. The file jaas.config should be copied to the file system of the
application server from ECE_CONFIG/security/

For WebLogic installations, use [some location of your choice]/jaas-
weblogic.config. The file jaas-weblogic.config should be copied to the file system of
the application server from ECE_CONFIG/security/

com.escenic.instance
The property com.escenic.instance will automatically have the value of the name of the
host that the instance runs on if both escenic.server and com.escenic.instance are
left unspecified. Set this property if you want it to a have a different value than the host name.
One scenario that requires this property to be set is when you are running two application server
instances on the same host. Its value should only consist of only letters, numbers, dots and
hyphens.

The property com.escenic.instance used to be the escenic.server property. The
property escenic.server still works but it is deprecated. Content Engine will ensure that
escenic.server and com.escenic.instance have the same value. If both are set by
your configuration, Content Engine will ignore escenic.server and assign your value of
com.escenic.instance to the escenic.server property.

com.escenic.instance.class
The property com.escenic.instance.class defaults to the basename of the the EAR file
at assembly time. Usually, this is "engine" since the EAR file name is engine.ear. The name is
taken from the server class of the EAR file.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 78

If you copy the default.properties (which describes the default engine.ear) and have
more than one server class it will be possible to use the name of your server class in your
configuration files using the ${com.escenic.server.class} syntax.

Assembly tool will create one ear file for every property file that it finds in the serverclasses
directory. Each of these will run with com.escenic.instance.class property set to the ear
file name.

Only set up this property if you want it to a have a different value than the ear filename (the
server class name). It should only consist of letters, numbers, dots and hyphens.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 79

14 Content Studio Setup

This chapter contains information about various issues related to the set-up of Content Studio.

14.1Language and Country Settings
By default, Content Studio uses the language and country settings of the client machine's operating
system if possible. If this is not possible (because the required language files are not available), then it
uses English language and country settings by default.

You can force Content Studio to ignore the operating system settings and use a specified language
by adding the following properties to configuration-layer-root/com/escenic/webstart/
StudioConfig.properties:

property.language
The 2-letter ISO language code of the required language (for example, en, no or de). This
setting determines the language in which all Content Studio menu items, labels and messages
are displayed. If you specify a language code for which no text files are available, then English
will be used by default.

property.country
The 2-letter ISO country code of the required country (for example, US, NO or DE). This setting
determines the formats and conventions used for displaying such things as decimal numbers,
dates and so on.

In addition, it is possible for Content Studio users to override the default behavior and any settings
in StudioConfig.properties by supplying parameters in the Content Studio URL. The default
Content Studio start-up link has the following URL:

http://host:8080/studio/studio.jnlp

where host is the host name or IP address of the Content Engine host. A user can force Content Studio
to be run in German, for example, by entering the following URL in the browser address field instead
of just clicking on the start-up link:

http://host:8080/studio/studio.jnlp?language=de&country=DE

Text files for the following languages are currently supplied with Content Studio:s

• English

• German

14.1.1 Translating Content Studio

If you need to make Content Studio available in a language other than those supplied by Escenic, you
can translate it yourself. The labels and message strings displayed in the user interface are all defined
in two text files:

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 80

ContentDescriptorFactory.properties
This file contains strings used in naming the content items stored in the Content Engine and
managed by Content Studio.

ContentStudio.properties
This file contains the strings used in the more generic parts of the Content Studio user interface.

To make a translated version of Content Studio you need to copy these files, translate all the strings
in them, change their names to include the correct two-letter language code (e.g, es for Spanish),
package them in JAR files and re-assemble the Content Engine. This process is described in detail in
the following sections.

Some of the text displayed in Content Studio comes from your publication resources. To ensure a
completely translated application, you must also make sure that all the names and labels defined in
these resources are also translated and tagged with the correct language code. For details, see the
Escenic Content Engine Resource Reference.

14.1.1.1 Translating Content Descriptors

The installation file paths used in the following description are the recommended file paths
described in the Escenic Content Engine Installation Guide. If your installation is organized
differently, then modify the paths accordingly.

To translate the content descriptor strings:

1. Login as escenic on your assembly-host (see the Escenic Content Engine Installation
Guide for an explanation of this term),

2. In an empty folder, execute the following command to get a copy of
ContentDescriptorFactory.properties

$ jar xvf /opt/escenic/engine/lib/engine-core-5.6.13.183224.jar neo/xredsys/
content/type/ContentDescriptorFactory.properties

3. Open ContentDescriptorFactory.properties and translate all the strings in it.

4. Rename ContentDescriptorFactory.properties as follows:

$ mv ContentDescriptorFactory.properties ContentDescriptorFactory_lang.properties

where lang is the ISO-639 code for your target language.

5. Copy the file to correct location in the assembly tool's classes folder:

$ cp ContentDescriptorFactory_lang.properties /opt/escenic/assemblytool/classes/
neo/xredsys/content/type

14.1.1.2 Translating Application Strings

The installation file paths used in the following description are the recommended file paths
described in the Escenic Content Engine Installation Guide. If your installation is organized
differently, then modify the paths accordingly.

To translate the Content Studio application strings:

1. Login as escenic on your assembly-host (see the Escenic Content Engine Installation
Guide for an explanation of this term),

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 81

2. In an empty folder, execute the following commands to get a copy of
ContentStudio.properties

$ jar xvf /opt/escenic/assemblytool/dist/war/studio.war studio/lib/studio-
core-5.6.13.183224.jar
$ jar xvf studio/lib/studio-core-osl-5.6.13.183224.jar com/escenic/studio/core/
resources/ContentStudio.properties

3. Open ContentStudio.properties and translate all the strings in it.

4. Rename ContentStudio.properties as follows:

$ mv ContentStudio.properties ContentStudio_lang.properties

where lang is the ISO-639 code for your target language.

5. Enter the following commands to package your translation file as a Content Studio add-on

$ mkdir -p studio/lib/
$ jar cvf studio/lib/mytranslation.jar com/escenic/studio/core/resources/
ContentStudio_lang.properties
$ jar cvf mytranslationAddon.jar studio/lib/mytranslation.jar

where mytranslation is the name you have chosen for your translation.

6. You need to digitally sign the add-on you have created: this is required by Java Webstart for
security reasons. For detailed information about this and how to create certificates and sign jar
files, see the Java SDK documentation. You can, however, sign the add-on with a self-certified
certificate that has a default validity of six months as follows:

$ keytool -genkey -keystore myKeyStore -alias escenic_translation
$ keytool -selfcert -keystore myKeyStore -alias escenic_translation
$ jarsigner -keystore myKeyStore mytranslationAddon.jar escenic_translation

7. Copy the signed add-on to the Content Studio addon folder as follows:

$ cp mytranslationAddon.jar /opt/escenic/engine/studio/addon

14.1.1.3 Deploying and Testing The Translation

To test your translation:

1. Assemble the Content Engine as described in the Escenic Content Engine Installation
Guide.

2. Deploy the re-assembled Content Engine on the engine-host you are using for test purposes.

3. Start Content Studio, making sure to use the correct engine-host. Depending on the language
settings of the computer you are working on, you may also need to specify the user-interface
language as described in section 14.1.

If you are satisfied with the results then you can deploy the re-assembled Content Engine to all your
engine-hosts. Otherwise correct any mistakes you have made in your language files, repeat the
packaging, assembly and deployment process and test again.

14.2Spelling Dictionaries
Spelling dictionaries for the following languages are supplied with Escenic Content Studio:

• English

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 82

• German

• Spanish

• French

You can however, add dictionaries for other languages (including right-to-left languages such as
Arabic).

Content Studio uses a third-party spelling checker created for an XML editor called XmlMind.
This product requires dictionaries to be compiled into a proprietary format, so in order to create a
dictionary for Content Studio you must first download a (free) dictionary compiler from http://
www.xmlmind.com/dictbuilder.shtml.

dictbuilder is a Java program. Supplied with it are a shell script and .BAT file so that it can be used
as a command line utility on any standard operating system. Full documentation is also available at the
above location.

Once you have downloaded and installed dictbuilder, the basic procedure for adding a dictionary
to Content Studio is:

1. Obtain one or more plain text word lists from which a dictionary can be generated. If you use
more than one word list, they must be in the same encoding.

2. Obtain or create a hints file: this is a text file containing optimization rules for the target
language. Ready-made hints files are provided for a number of languages in the dictbuilder
download package. If there is no hints file in the package for your target language, then you will
need to create one. In order to create a good hints file you need detailed knowledge of the target
language. For further information, see http://www.xmlmind.com/_dictbuilder/doc/
hints_file.html.

3. Optionally, obtain or create a freq file (a list of frequently-used words) and a prefixes file
(a list of allowed prefixes). Again, these are provided for some languages in the dictbuilder
download package, otherwise you can make them yourself if you have sufficient knowledge of the
target language.

4. Generate a dictionary using dictbuilder. For further information, see http://
www.xmlmind.com/_dictbuilder/doc/using_builder.html. This produces a .cdi
output file.

5. Optionally package the .cdi file in a .dar archive. For further information, see http://
www.xmlmind.com/_dictbuilder/doc/storage_of_dicts.html.

6. Upload the .cdi file or .dar archive to a web server somewhere in your network.

7. Create a text file and enter the URL of the dictionary (.cdi file or .dar archive) you have
uploaded. If you have created several dictionaries, then you should add the URLs of all your
dictionaries to this file, each on a separate line.

8. Upload this text file to a web server somewhere in your network.

9. Edit your configuration-layer-root/com/escenic/webstart/StudioConfig.properties
file. Add a new property called property.com.escenic.xmlmind.dictionary.list.url,
and set its value to the URL of the dictionary list file that you uploaded in step 7.

Once this has been done, the new dictionaries you have added should be available from any Content
Studio instances launched via WebStart.

http://www.xmlmind.com/dictbuilder.shtml
http://www.xmlmind.com/dictbuilder.shtml
http://www.xmlmind.com/_dictbuilder/doc/hints_file.html
http://www.xmlmind.com/_dictbuilder/doc/hints_file.html
http://www.xmlmind.com/_dictbuilder/doc/using_builder.html
http://www.xmlmind.com/_dictbuilder/doc/using_builder.html
http://www.xmlmind.com/_dictbuilder/doc/storage_of_dicts.html
http://www.xmlmind.com/_dictbuilder/doc/storage_of_dicts.html

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 83

If , for example, you created dictionaries for Norwegian and Swedish (no.cdi and se.cdi) and
uploaded them to http://www.my-domain.com/static/dictionaries, then you would need to
create a file (lets call it dictionary-list.txt) with the following content:

http://www.my-domain.com/static/dictionaries/no.cdi
http://www.my-domain.com/static/dictionaries/se.cdi

If you uploaded this file to the same location, then you would need to add the following property to
your configuration-layer-root/com/escenic/webstart/StudioConfig.properties file:

property.com.escenic.xmlmind.dictionary.list.url=http://www.my-domain.com/static/
dictionaries/dictionary-list.txt

14.2.1 Dictionary Sources

There are a number of free/open source spelling checkers available, many of which have associated
word lists for a wide range of languages. These word lists are in most cases themselves open source,
and can therefore be freely used (although there may be restrictions on redistribution). They may need
to be decompiled from their native format before they can be used as input to dictbuilder.

Two of the most commonly used spelling checkers are ispell and aspell. Dictionaries created for
these two systems cover a wide range of languages.

In addition, ready-converted XmlMind dictionaries for a number of languages can be downloaded
from http://www.xmlmind.com/spellchecker/user_contrib_dicts.html.

14.2.1.1 Converting Ispell Dictionaries

The dictbuilder documentation includes instructions on how to use dictionaries made for
ispell (a popular open source spelling checker) here: http://www.xmlmind.com/_dictbuilder/doc/
from_ispell.html.

14.2.1.2 Converting Aspell Dictionaries

Here is an example of how to create an XmlMind dictionary from an aspell dictionary (in this case
Greek, which has the ISO language code el). To do this you need to install aspell on your computer
as well as dictbuilder. aspell is available for both Windows and Unix-based platforms. The
dictbuilder package includes a hints and a freq file for Greek.

1. Export the aspell word list:

$ aspell --encoding ISO-8859-7 -l el dump master > greek.txt

Note that you need to ensure that the encoding of the exported word list is the same as any hints,
freq and prefixes files you are going to use.

2. Convert the exported word list with dictbuilder:

$ dictbuilder -cs ISO-8859-7 -hints el.hints -freq el.freq greek.txt -o el.cdi

3. Upload el.cdi to your web server.

4. Create a dictionary-list.txt file containing the URI of el.cdi (plus the URIs of any other
dictionaries you have uploaded). For example:

...
http://www.my-domain.com/static/dictionaries/el.cdi
...

http://www.xmlmind.com/spellchecker/user_contrib_dicts.html
http://www.xmlmind.com/_dictbuilder/doc/from_ispell.html
http://www.xmlmind.com/_dictbuilder/doc/from_ispell.html

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 84

5. Upload dictionary-list.txt to the same location.

6. Add the following property to your configuration-layer-root/com/escenic/webstart/
StudioConfig.properties file:

property.com.escenic.xmlmind.dictionary.list.url=http://www.my-domain.com/static/
dictionaries/dictionary-list.txt

14.3Memory Settings
You can change the Java memory settings used to run Content Studio on the client by
modifying the vmargs property in configuration-layer-root/com/escenic/webstart/
StudioConfig.properties. The default setting for this property is:

vmargs=-Xms128m -Xmx256m

These settings may, however, be too low for users who need to be able to edit large images.

14.3.1 Size Restrictions in Image Editor

Content Studio has a threshold which, if crossed, disables image editing features. This is to avoid using
too much memory. Opening images in external editors is still supported in this mode.

By default, the threshold is set to 2 megapixel images. This can be changed by setting the property
com.escenic.studio.maximum-editable-image-size in configuration-layer-root/com/
escenic/webstart/StudioConfig.properties as follows:

property.com.escenic.studio.maximum-editable-image-size=size

where size is the number of pixels that designate the threshold, above which Content Studio will
disable editing functionality.

14.4Default Sort Order
You can change the default sort order Content Studio uses when listing content items by setting the
property com.escenic.studio.search.date in configuration-layer-root/com/escenic/
webstart/StudioConfig.properties as follows:

property.com.escenic.studio.search.date=date

where date is one of:

creationDate (default)
Content items are sorted by the date they were created.

lastModifiedDate (default)
Content items are sorted by the date they were last modified.

publishDate (default)
Content items are sorted by the date they were published. Note that if you use this option,
content items that have never been published will not be listed.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 85

14.5MIME Type Mappings
You can override Content Studio's default MIME type mappings by setting the property
com.escenic.external-mimetypes in configuration-layer-root/com/escenic/webstart/
StudioConfig.properties as follows:

property.com.escenic.external-mimetypes=mimetypes

where mimetypes is a JSON object defining a series of mappings between file type extensions and
MIME types. For example:

property.com.escenic.external-mimetypes={avi:'video/x-msvideo',jpg:'image/jpeg'}

Content Studio's default MIME type mappings usually work for most common cases. It is only
necessary to use this property if you get problems that arise from incorrect MIME type assignment.

14.6Varnish and Content Studio File Uploads
Content Studio and Tomcat use a chunked transfer encoding mechanism to support upload of large
files. Varnish (a web application accelerator commonly used on Escenic sites) does not support
chunked transfer encoding. This means that if you use Varnish between Content Studio and Tomcat,
uploading of files is not possible.

For this reason you are recommended not to use Varnish between Content Studio and Tomcat.

If not using Varnish between Content Studio and Tomcat is difficult, you can alternatively
disable Content Studio's use of chunked transfer encoding. To do this, add the property
property.com.escenic.client.chunked to configuration-layer-root/com/escenic/
webstart/StudioConfig.properties and set ti to false as follows:

property.com.escenic.client.chunked=false

This instructs Content Studio to not use chunked transfer encoding when posting files.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 86

15 Active Directory-Based Authentication

The Content Engine can be set up to use Active Directory for authentication of users, instead of doing
the authentication itself. For organizations with primarily Windows-based networks this makes it
possible for users to log in to Content Studio and Web Studio using their ordinary network user names
and passwords. Note, however, that:

• This is not a "single sign on" mechanism: users will still have to log in when starting Content Studio
and Web Studio, even if they are already logged in to the network.

• Only authentication is carried out by Active Directory, authorization is still performed by the
Content Engine, so you still have to define Content Engine users. The Content Engine users must
have identical user names to the Active Directory users.

To set up Active Directory-based authentication:

1. Using Web Studio, create users (see Escenic Content Engine Publication Administrator
Guide, section 2.1.2.1) for all the existing Active Directory users who are to use Content
Studio or Web Studio. The user names you specify must be identical to the user names in Active
Directory. You can leave the password fields blank.

2. Assign access rights to these user in the usual way (see Escenic Content Engine Publication
Administrator Guide, section 2.1.4) .

3. If you have any existing Content Engine users that you want to keep (publication administrators,
for example) that do not exist in Active Directory, then you need to add users with identical user
names to Active Directory.

4. Enable the Content Engine to connect to Active Directory. This involves reassembling and
redeploying the Content Engine (see section 15.1).

5. Reconfigure the Content Engine to use Active Directory for authentication, and restart you
application server (see section 15.2).

6. Using Web Studio, you can now tidy up by deleting any old Content Engine-authenticated users
that are no longer required (see Escenic Content Engine Publication Administrator
Guide, section 2.1.2.3).

15.1Enabling Connection to Active Directory
In order to enable the use of Active Directory you need to create a configuration file defining how to
connect to Active Directory, and deploy it together with the Content Engine as follows:

1. Login as escenic on your assembly-host (see the Escenic Content Engine Installation
Guide for an explanation of this term).

2. Go to the location of the assembly tool's classes folder:

$ cd /opt/escenic/assemblytool/classes/

3. Create a new directory structure:

$ mkdir -p com/escenic/jaas

4. Create a new file named shiro.conf in the new directory and open it in an editor. Enter the
following configuration settings:

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 87

[main]
activeDirectoryRealm = org.apache.shiro.realm.activedirectory.ActiveDirectoryRealm
activeDirectoryRealm.url=ldap://my_server:3268/
activeDirectoryRealm.searchBase=dc=my,dc=company
activeDirectoryRealm.systemUsername=my_username
activeDirectoryRealm.systemPassword=my_password

Set the parameters to match your Active Directory set up:

activeDirectoryRealm.url
The URL of your Active Directory server.

activeDirectoryRealm.searchBase
The base dn of your Active Directory.

activeDirectoryRealm.systemUsername
The user name to use when connection to Active Directory.

activeDirectoryRealm.systemPassword
The password to use when connecting to Active Directory.

5. Save the file and build a new ear file by entering:

$ ece clean assemble

6. Deploy the ear file to your engine-hosts.

15.2Switching to Active Directory
To switch to using Active Directory for authentication you need to change a setting in the Content
Engine's authentication configuration file. In a standard installation (as described in the Escenic
Content Engine Installation Guide), this configuration file will be located in the common
configuration layer: /etc/escenic/engine/common/security/jaas.config.

Open this file for editing and replace:

ece-basic {
 com.escenic.auth.jaas.BasicLoginModule required;
};

with:

ece-basic {
 com.escenic.auth.jaas.ShiroLoginModule required;
};

Then restart the application server.

Users should now be able to login to Content Studio and Web Studio using their Active Directory user
names and passwords. If this does not seem to work, it may be because Active Directory requires the
domain name to be specified with user names. For such case you have to either

• Specify the domain name when login, for example, username@example.com.

• Or, set the domain name to use by default (see section 15.2.1).

For the former option to work properly you must have users having usernames of the same format, i.e.
username@example.com in Escenic Content Engine.

Escenic Content Engine Server Administration Guide

Copyright © 2003-2017 Escenic AS Page 88

15.2.1 Setting a Default Domain

Active Directory may require users to include the domain name with their user name when logging in.
That is, they made need to enter something like myuser@mydomain.com instead of just myuser.

If this is the case you can fix the problem by modifying the entry in jaas.config to include a default
domain name as follows:

ece-basic {
 com.escenic.auth.jaas.ShiroLoginModule required domain=mydomain.com;
};

The default domain specified here will then be automatically appended if the user does not specify one.

