
Escenic Tag Library

Reference
6.3.2-1

Table of Contents

1 Introduction.. 5

1.1 Taglibs.. 5

1.2 Escenic Taglibs.. 5

1.3 Conventions.. 5

1.4 Common attributes... 6

1.5 How to use JavaBeans with Escenic tags... 6

1.5.1 Accessing Simple Properties...6

1.5.2 Accessing Nested Properties.. 6

1.5.3 Accessing Indexed Properties...7

1.5.4 Accessing Mapped Properties...7

2 article Tag Library..8

2.1 article:define..9

2.2 article:expiresCache..10

2.3 article:fieldDistribution...11

2.4 article:list... 11

2.5 article:use..15

2.6 article:renderField... 16

3 collection Tag Library.. 19

3.1 collection:add.. 19

3.2 collection:addAll.. 20

3.3 collection:contains...20

3.4 collection:createList...21

3.5 collection:createMap... 22

3.6 collection:createSet...22

3.7 collection:get... 23

3.8 collection:isEmpty... 24

3.9 collection:isNotEmpty..24

3.10 collection:pageByPage..24

3.11 collection:remove.. 25

3.12 collection:string... 26

4 publication Tag Library.. 28

4.1 publication:use.. 28

5 profile Tag Library..29

5.1 profile:define... 29

5.2 profile:exist..30

5.3 profile:notExist.. 30

5.4 profile:present... 31

5.5 profile:notPresent..31

5.6 profile:use... 31

6 section Tag Library..33

6.1 section:ancestorView.. 34

6.2 section:expiresCache..35

6.3 section:recursiveView... 35

6.4 section:use..36

6.5 section:view.. 37

7 template Tag Library..39

7.1 template:call..39

7.2 template:parameter...41

7.3 template:serviceParameter... 41

8 util Tag Library...43

8.1 util:cache...43

8.2 util:expiresCache.. 44

8.3 util:includeExtContent... 45

8.4 util:image...46

8.5 util:logMessage... 46

8.6 util:lookup..47

8.7 util:pager... 48

8.8 util:parameter.. 48

8.9 util:pluginResources..49

8.10 util:profiler... 50

8.11 util:rewrite..51

8.12 util:sendMail.. 52

8.13 util:toggle...52

8.14 util:toggleNext... 53

8.15 util:click... 53

9 view Tag Library.. 55

9.1 view:add..55

9.2 view:subtract... 56

9.3 view:iterate..56

9.4 view:forEachLevel...57

9.5 view:relationships..58

9.6 view:first.. 58

9.7 view:last.. 59

10 tag Tag Library.. 61

10.1 tag:use.. 61

11 captcha Tag Library...62

11.1 captcha:recaptchaHTML...62

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 5

1 Introduction

This manual contains reference information about the Escenic tag libraries. These tag libraries were
the primary mechanism for accessing the JavaBeans created by the Escenic Content Engine in earlier
versions of the Content Engine. This is, however, no longer the case. You are now recommended to
use standard JSP/JSTL tags and the JSP expression language to access the Escenic beans in most
cases. For a description of this technique and some simple examples, see the Escenic Content Engine
Template Developer Guide.

The tag libraries are, however, still available for two purposes:

• In order to provide support for existing applications that rely on the tag libraries.

• To provide specialized functionality that cannot easily be realized in other ways.

You are in general recommended to avoid use of the tag libraries in new applications, and only use
them where necessary. All the tags that you should avoid using in new applications are marked as
deprecated. If you are maintaining an existing application or for some other reason really need to use
one of these tags, then you should look up the description of it in an earlier version of this manual.

1.1 Taglibs
A tag library or taglib is a JSP standard for customized tag extensions. Like HTML, JSP has a set of
standard tags. Unlike HTML, JSP allows the creation of new, customized tags. A set of non-standard
tags is called a tag library.

1.2 Escenic Taglibs
The Escenic taglibs are:

• template - Operates on jsp template files

• publication - Operates on publications

• article - Operates on content items

• section - Operates on sections

• util - general utilities

• collection - Java Collection utilities

• view - Allows navigation in and display of trees such as the section structure

• relation - Operates on related content items

1.3 Conventions
Tag attributes in the Escenic tag libraries follow standard tag library conventions:

• All attributes are optional unless explicitly marked as required

http://docs.escenic.com/ece-temp-dev-guide/6.3/
http://docs.escenic.com/ece-temp-dev-guide/6.3/

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 6

• All attributes can be assigned a value using a scriptlet unless noted otherwise (runtime expression
false)

1.4 Common attributes
Some tag attributes are used consistently across many tags:

Attribute Description

id The id attribute is not always mandatory.

If id is set (mandatory or not), it is used to name the scripting variable created by
the tag, as well as the key value used to locate the bean in page scope.

If id is not set the tag is replaced by its value.

name The key value used to look up an existing bean in any scope.

property Identifies a property of the bean identified by the name attribute which is to be used
as an input parameter by the tag. If not specified, the bean identified by the name
attribute is used as an input parameter.

1.5 How to use JavaBeans with Escenic tags
JavaBeans are very important when using the Escenic tags. The JavaBeans the tags are working
with are primary Escenic objects. To get a better picture of the Escenic JavaBeans see the Bean
Reference. These beans can be in any scope: page, request, session or application. But the
primary scope we use is page.

You can use an Escenic tag's name/property attributes to access JavaBean properties, as shown in
the following examples.

1.5.1 Accessing Simple Properties

Lets us first take a look at a simple property reference within a tag:

property="url"

This is converted to a method call on the corresponding bean. Based on standard JavaBeans naming
conventions, our example would do a call to the method getUrl().

1.5.2 Accessing Nested Properties

The nested references are used to access a property through a hierarchy of property names separated
by dots (.). We can take a look at a typical example for a Escenic template:

property="homeSection.name"

This will be translated into this Java expression:

getHomeSection().getName()

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 7

1.5.3 Accessing Indexed Properties

Subscripts can be used to access individual elements of a property whose value is an array, or a List.
For example, when index getter are present, you may experience something like:

property="sections[1]"

This will be translated to:

getSection(1)

1.5.4 Accessing Mapped Properties

Works pretty much as indexed properties. By sending the key of an element in the map, you obtain the
desired property. Consider the following example:

property="parameter(color)"

This reference will be translated into the Java expression:

getProperty("color")

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 8

2 article Tag Library

This library contains tags that operate on PresentationArticle beans.

All the tags in this library operate on the current context's default article (content item), except use
and list. In these cases you can specify the article to operate on using one of the following attributes
or attribute combinations:

• article

• articleId

• name

• name and property

• source and sourceId

In order to use any article tags in a JSP file you must include the following prefix declaration in the file:

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-article" prefix="article" %>

article is the prefix normally used for this tag library.

Common Attributes

To specify an article you must set one of the following attributes or attribute combinations:

• article

• articleId

• name

• name and property

• source and sourceId

If one of these attributes or attribute combinations is specified, then the current article is ignored.

article
The supplied bean must either be a neo.xredsys.api.Article or a
neo.xredsys.presentation.PresentationArticle bean.

Using this attribute excludes the use of the attributes articleId, name/property and
source/sourceId.

articleId
The value supplied can be an int, Integer or String.

Using articleId excludes the use of the attributes article, name/property and source/
sourceId.

name
The name (key) of a bean that is to be used to locate an article. There are two ways of using this
bean:

Using this attribute excludes the use of the attributes article, articleId and source/
sourceId.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 9

property
The name of a bean property. This attribute is used together with the name attribute to locate
an article. If name is specified but this attribute is not specified, then the bean identified by the
name attribute will be used.

This attribute cannot be used without the name attribute.

source
The source of an article. This attribute must be used together with sourceId.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

sourceId
The source ID of an article. This attribute must be used together with source.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

2.1 article:define
Creates a scripting variable and a page-scoped bean from the specified article. The tag is similar to
article:use, but unlike article:use does not set the current article.

Syntax

<article:define
 article="..."?
 articleId="..."?
 id="..."
 name="..."?
 property="..."?
 source="..."?
 sourceId="..."?
 toScope="..."?/>

Attributes

id, mandatory, no runtime expressions
Name of the scripting-variable we make.

toScope
Identify the JSP scope within which the PresentationArticle-bean will be created. If not
specified, then the PresentaionArticle-bean is created in page scope.

Allowed values are:

article
A scriptlet that returns the required article.

Using this attribute excludes the use of the attributes articleId, name/property and
source/sourceId.

articleId
An article id identifying the article to be defined. The value supplied can be an int, Integer or
String.

Using articleId excludes the use of the attributes article, name/property and source/
sourceId.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 10

name
The name (key) of a bean from which a new bean/scripting variable is to be created.

There are two ways of using this bean:

Using this attribute excludes the use of the attributes article, articleId and source/
sourceId.

property
The name of a bean property. This attribute is used together with the name attribute to locate
an article from which a new bean/scripting variable is to be created. If name is specified but this
attribute is not specified, then the bean identified by the name attribute will be used.

This attribute cannot be used without the name attribute.

source
The source of the article to define. This attribute must be used together with sourceId.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

sourceId
The source ID of the article to define. This attribute must be used together with source.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

2.2 article:expiresCache
Expires the JSP cache if the specified article has been updated. It locates the enclosing util:cache
tag and expires that cache. If there is no enclosing util:cache then nothing is done.

If a util:cache block contains more than one expiresCache tag, then the cache will be expired if
any one of the specified articles has been updated.

See also

util:cache (section 8.1)

Syntax

<article:expiresCache
 article="..."?
 articleId="..."?
 name="..."?
 property="..."?
 source="..."?
 sourceId="..."?/>

Attributes

article
The article used to expire to cache.

articleId
Article id to identify the article to expire the cache.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 11

name
Name of an bean to specify article to expire the cache.

property
Property used to find the article to expire the cache.

source
Source of the article to expire to cache.

sourceId
SourceId used to identify the article to expire the cache.

2.3 article:fieldDistribution
Counts hits for each first letter.

Syntax

<article:fieldDistribution
 groupBy="..."?
 id="..."
 sectionId="..."?/>

Attributes

id, mandatory, no runtime expressions
Name of the Map returned.

groupBy
What to group the hit count on.

sectionId
Id of the section to be used.

Scripting variable (id)

A scripting variable will be defined using the value of the id attribute as its name. The variable is of
type java.util.Map.

2.4 article:list
This tag retrieves the latest n articles from a publication (using the Publications "all"-section), a
section, a list of sections or a selection of sections. If no section is specified the current section will be
used. If you specify an illegal attribute (for example, a uniqueName that does not exist) the ece_all
section is used.

Only published articles belonging to published home sections are retrieved. The retrieved articles are
returned in a java.util.List

Field indexing

The expression and field attributes can only be used on indexed fields. Field indexing must be
specified on a per-field basis in the publication's content-type resource.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 12

To switch on field indexing in a particular content type, you must add a parameter element that sets
the parameter neo.xredsys.service.article.attribute to true.

<content-type name="news">
...
 <parameter name="neo.xredsys.service.article.attribute" value="true"/>
</content-type>

Once you have done this, you can specify indexing of individual fields within the content type by
adding neo.xredsys.service.article.attributeField parameters to the field definitions:

<field name="priority" type="number">
 ...
 <parameter name="neo.xredsys.service.article.attributeField" value="priority"/>
</field>

Note that the value attribute is set to the name of the field that is to be indexed. The
neo.xredsys.service.article.attributeField parameter actually determines the name that
you will need to use to identify the indexed field in the article:list tag. You could set it to some
other name, but you are advised not to do so.

The examples shown above will ensure that the priority field of news content items is indexed and
can be used for selection purposes by article:list.

Age

Two properties in the feature publication resource affect the behavior of this tag:

article.list.age.max
Specifies the maximum age (in hours) of content items that may be retrieved, thus potentially
overriding the value you specify with the from attribute. If you specify a from value that
equates to an age greater than article.list.age.max, then it will be ignored, and
article.list.age.max will be used instead. The default is 720 hours (=30 days). To disable
this limit, set article.list.age.max to -1.

article.list.age.default
The default age limit (in hours) that will be used if no from value is specified. The default is 720
hours (=30 days). To disable this default (so that there is no from limit if one is not explicitly
specified), set article.list.age.max to -1.

Caching

By default, the result will be cached for 1 minute.

When using the to property, the result may not be cached and the tag should be wrapped in a
<util:cache />, to avoid slowing down the system too much. Please see the documentation of the
to property for more information regarding this.

Syntax

<article:list
 all="..."?
 excludeArticleTypes="..."?
 expression="..."?
 field="..."?
 from="..."?

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 13

 homeSectionOnly="..."?
 id="..."
 includeArticleTypes="..."?
 includeSubSections="..."?
 max="..."?
 name="..."?
 onlyLive="..."?
 property="..."?
 publicationId="..."?
 sectionId="..."?
 sectionUniqueName="..."?
 sort="..."?
 to="..."?
 view="..."?
 view="..."?/>

Attributes

id, mandatory, no runtime expressions
A name to identify the selected articles.

from
How far back to list articles. The time could either be defined as hours in the past or as an exact
date. The format of the exact date is yyyy-MM-dd hh:mm. The exact date should always be in
the past.

If not defined or set to -1 the function is disabled.

excludeArticleTypes
We will exclude the article type set here. May be a list of comma separated article types.

If neither includeArticleTypes or excludeArticleTypes are set, all article types will be
included in the list.

homeSectionOnly
If set to true we will only list articles which has sectionId as homeSection.

includeArticleTypes
We will include the article type set here. May be a list of comma separated article types.

If neither includeArticleTypes or excludeArticleTypes are set, all article types will be
included in the list.

includeSubSections
will include articles from sub sections in the list if set to true. The default value is false.

max
How many articles to list

onlyLive
will only list articles that are alive. Default value is set to true. If set to false it will include all
states possible for an article.

This attribute has been deprecated and should not be used.

publicationId
The publicationId. If publicationId is not set we will use the default publication.

sectionId
The id of the sections to get latest articles from. May be a list of comma separated ids.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 14

sectionUniqueName
The name of the sections to get latest articles from. May be a list of comma separated names. It
must be the sections uniquename!

name
Specifies the attribute name of the Section we are going to search for Articles.

The bean you specify must be of type Section, or you also have to specify property.

property
Specifies the name of the property to be accessed on the bean specified by the name attribute.
You can not use this attribute without the name attribute.

This value may be a simple, indexed, or nested property reference expression. If not specified,
the Section identified by name (we then assume the the bean specified is a Section) will be used
in the search.

to
If set, the tag will return articles up to this point in time. The time could either be defined in
hours in the past or as an exact date. The format of the exact date is yyyy-MM-dd hh:mm. The
exact date should always be in the past.

If not defined, set to -1 or an exact date is specified, the result will be cached. If set to hours, the
result will not be cached.

view
a view of sections we will use in the search for the latest articles

sort
What we will sort the article list on. Valid values are: publishDate, lastChangedDate. It is
possible to send none to disable the sort function.

To decide if the sorting shall be ascending or descending you simply add either +/- before the
desired sort criteria.

E.g. -publishDate is sorting descending on the published date of the articles

If this attribute is used together with the expression and field attributes, you can not
sort it by date. It is only possible to specify if the sort will be ascending or descending.

view
a view of sections we will use in the search for the latest articles

expression
Is used to get a limited search. This attribute is always used together with the field attribute.

E.g. if you specify the title in field attribute and a* in expression you will only get articles that
has a title that start with a or A. If you want articles that start with the letters a, b or c you use a-
d.

d-f will include all article with title that starts with d and e. It will not include f.

If the field you want to use the expression in is of type enumeration you must wrap the
expression with the following: <ecs_selection>expression</ecs_selection>.

field
Is used when you want the articles sorted by the specified field. And it is used together with the
expression attribute.

all
Attribute to override the default limit of max age on articles. If this is set to true, then all article
will be included in the list.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 15

This attribute should be used with caution. It may cause large search results and slow jsp
pages. It should only be used when you limit the search with for instance articleType or a
section that do not contain many articles.

Scripting variable (id)

A scripting variable will be defined using the value of the id attribute as its name. The variable is of
type java.util.List.

2.5 article:use
Sets the current article for the body of this tag. All article tags that use the current article in the body
of this tag will use the article specified here rather than the current article set outside this tag.

All the other tags in this library expect a current article to be set (although some allow you to
optionally specify the article to operate on).

To specify the new current article you must set one of the following attributes or attribute
combinations:

• article

• articleId

• name

• name and property

• source and sourceId

Syntax

<article:use
 article="..."?
 articleId="..."?
 name="..."?
 property="..."?
 source="..."?
 sourceId="..."?>
 ...
</article:use>

Attributes

article
The article to be set as current article in the body of this tag. The supplied bean must either be a
neo.xredsys.api.Article or a neo.xredsys.presentation.PresentationArticle
bean.

Using this attribute excludes the use of the attributes articleId, name/property and
source/sourceId.

articleId
An article id identifying the article to be set as current article in the body of this tag. The value
supplied can be an int, Integer or String.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 16

Using articleId excludes the use of the attributes article, name/property and source/
sourceId.

name
The name (key) of a bean that is to be used to locate an article that will be used as current article
in the body of this tag.

There are two ways of using this bean:

Using this attribute excludes the use of the attributes article, articleId and source/
sourceId.

property
The name of a bean property. This attribute is used together with the name attribute to locate
an article that will be used as current article in the body of this tag. If name is specified but this
attribute is not specified, then the bean identified by the name attribute will be used as current
article.

This attribute cannot be used without the name attribute.

source
The source of an article to be used as current article in the body of this tag. This attribute must
be used together with sourceId.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

sourceId
The source ID of an article to be used as current article in the body of this tag. This attribute
must be used together with source.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

2.6 article:renderField
This tag makes it possible for template developers to access inline objects and specify style
according to their types. The body of the tag will be executed once for each inline object in a
particular field. The mime-type of the field must be 'application/xhtml+xml'. The inline object
will be made available as an attribute in either page, request, session or application scope, as
specified by the template developer. The default is page scope. The type of the attribute will be
neo.xredsys.presentation.PresentationElement

Syntax

<article:renderField
 article="..."?
 articleId="..."?
 field="..."?
 fieldValue="..."?
 name="..."?
 output="..."?
 property="..."?
 source="..."?
 sourceId="..."?
 toScope="..."?
 var="..."

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 17

 varBody="..."?>
 ...
</article:renderField>

Attributes

article
The article to be set as current article in the body of this tag. The supplied bean must either be a
neo.xredsys.api.Article or a neo.xredsys.presentation.PresentationArticle
bean.

Using this attribute excludes the use of the attributes articleId, name/property and
source/sourceId.

articleId
An article id identifying the article to be set as current article in the body of this tag. The value
supplied can be an int, Integer or String.

Using articleId excludes the use of the attributes article, name/property and source/
sourceId.

If both article and articleId attributes are used together, then articleId takes
precedence.

name
The name (key) of a bean that is to be used to locate an article that will be used as current article
in the body of this tag.

There are two ways of using this bean:

Using this attribute excludes the use of the attributes article, articleId and source/
sourceId.

property
The name of a bean property. This attribute is used together with the name attribute to locate
an article that will be used as current article in the body of this tag. If name is specified but this
attribute is not specified, then the bean identified by the name attribute will be used as current
article.

This attribute cannot be used without the name attribute.

source
The source of an article to be used as current article in the body of this tag. This attribute must
be used together with sourceId.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

sourceId
The source ID of an article to be used as current article in the body of this tag. This attribute
must be used together with source.

Using this attribute excludes the use of the attributes article, articleId and name/
property.

var, mandatory, no runtime expressions
The name of the attribute in which an inline item will be stored

varBody, no runtime expressions
The name of the attribute in which the body text of the inline item will be stored, if any.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 18

field
The name of the article field. Either field or fieldValue is required.

fieldValue
The value of the article field. Either field or fieldValue is required.

toScope, no runtime expressions
The scope in which an inline item will be stored as an attribute

output
The value html or xml.

The value html causes the output of the markup in the field to be rendered as HTML compliant
markup. For example,
 tags will not be closed. The value xml causes the output to be
rendered as XML.
 tags will in this case be rendered with a closing tag:
.

The value html is the default.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 19

3 collection Tag Library

This tag library contains tag that are usefull to create new Collections, or manipulate existing
Collections.

When we are talking about Collections this is equivalent to the java interface
java.util.Collection. Except that we have included java.util.Map into our tags.

The essential tags in this taglib are:

• add

• createList

• createMap

• createSet

• get

• pageByPage

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-collection"
 prefix="collection" %>

We usually use collection as prefix to this tag library.

3.1 collection:add
Adds a value to a Collection. When adding a value to a Map or List you must only use value/
valueName/valueProperty. But you are adding to a Map you must use both value/valueName/
valueProperty and key/keyName/keyProperty.

Syntax

<collection:add
 collection="..."
 key="..."?
 keyName="..."?
 keyProperty="..."?
 value="..."?
 valueName="..."?
 valueProperty="..."?/>

Attributes

collection, mandatory
The collection to add a object to. This can either be a List, Set or Map.

value
This will be the object to add to the specified Collection. It is not necessary to specify this
attribute if valueName is used. They are mutual exclusively. If both are specified the value will
be used.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 20

valueName
Specifies the attribute name of the bean that we will use as value. If valueProperty also is
provided we will get that property from the bean specified here. This attribute is required unless
you specify a value attribute.

valueProperty
Will get the property from the bean specified by the valueName attribute. To use this attribute
valueName must also must be defined.

key
This will be the object to add to the specified Collection. It is not necessary to specify this
attribute if valueName is used. They are mutual exclusively. If both are specified the value will
be used.

keyName
Specifies the attribute name of the bean that we will use as key. If keyProperty also is provided
we will get that property from the bean specified here. This attribute is required unless you
specify a key attribute.

keyProperty
Will get the property from the bean specified by the keyName attribute. To use this attribute
keyName must also must be defined.

3.2 collection:addAll
Adds a Collection to a existing Collection. When adding a Collection you can specify it with the
attributes: add or addName/addProperty.

Syntax

<collection:addAll
 add="..."?
 addName="..."?
 addProperty="..."?
 collection="..."/>

Attributes

collection, mandatory
The Collection to add another Collection into. This can either be a List, Set or Map.

add

addName

addProperty

3.3 collection:contains
Will render body if Collection contains specified Object. Else it will skip to body of this tag.

Syntax

<collection:contains

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 21

 collection="..."
 name="..."?
 property="..."?
 value="..."?>
 ...
</collection:contains>

Attributes

collection, mandatory
The collection we will check if it contains the specified object.

value
This will be the object to check if it is added to the specified Collection. It is not necessary to
specify this attribute if name is used. They are mutual exclusively. If both are specified the value
will be used.

name
Specifies the attribute name of the bean that we check if it is added to the specified collection. If
property also is provided we will get that property from the bean specified here. This attribute is
required unless you specify a value attribute.

property
Will get the property from the bean specified by the name attribute. To use this attribute name
must also must be defined.

3.4 collection:createList
Creates an instance of a java.util.List object. It will default create a java.util.ArrayList. If
other types of Lists are desired, this must be specified in the type attribute.

The list will be defined as an attribute accessible to the remainder of the current page.

Syntax

<collection:createList
 id="..."
 toScope="..."?
 type="..."?/>

Attributes

id, mandatory, no runtime expressions
Specifies the name of the scripting variable (and associated page scope attribute) that will be
made available with the value of the specified property.

toScope
Identify the JSP scope within which the List will be created. If not specified, then the bean is
created in page scope.

Allowed values are:

type
The type of list to create. If not specified there will be created an java.util.ArrayList.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 22

3.5 collection:createMap
Creates an instance of a java.util.Map object. It will default create a java.util.HashMap. If
other types of Lists are desired, this must be specified in the type attribute.

The Map will be defined as an attribute accessible to the remainder of the current page.

Syntax

<collection:createMap
 id="..."
 toScope="..."?
 type="..."?/>

Attributes

id, mandatory, no runtime expressions
Specifies the name of the scripting variable (and associated page scope attribute) that will be
made available with the value of the specified property.

toScope
Identify the JSP scope within which the List will be created. If not specified, then the bean is
created in page scope.

Allowed values are:

type
Which type of map to create. If this is not specified a java.util.HashMap will be created.

3.6 collection:createSet
Creates an instance of a java.util.Set object. It will default create a java.util.HashSet. If
other types of Lists are desired, this must be specified in the type attribute.

The Set will be defined as an attribute accessible to the remainder of the current page.

Syntax

<collection:createSet
 id="..."
 toScope="..."?
 type="..."?/>

Attributes

id, mandatory, no runtime expressions
Specifies the name of the scripting variable (and associated page scope attribute) that will be
made available with the Set.

toScope
Identify the JSP scope within which the List will be created. If not specified, then the bean is
created in page scope.

Allowed values are:

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 23

type
Which type of java.util.Set to create. If not specified a java.util.HashSet will be
created.

3.7 collection:get
Will get an element from the Collection specified. This tag will only work if the Collection is either a
List or a Map.

Set do not have a get method.

If your Collection is a Map the key and name/property attributes must be the key value of the
wanted element. But if the Collection is a List the attributes must be the index of the wanted element.

This tag might return null, if the specified item does not exist or that null acctually are added in the
Collection.

Syntax

<collection:get
 collection="..."
 id="..."?
 key="..."?
 name="..."?
 property="..."?
 type="..."?/>

Attributes

collection, mandatory
The collection to get element from. This must be either a List or a Map.

Set do not have a get method.

id, no runtime expressions
If the id is set the object will be made available as a scripting variable. If id is not specified the
object fetched from the collection will be printed directly to the page.

type
Type of object that will be return from this tag. Either as a scripting variable or be written
directly out. See the id-attribute.

key
Key of the object we will get from the Map or the index to get from the List.

name
Name to a bean to be used as key of the object we will get from the Map or the index to get from
the List.

property
Specifies the name of the property to be used as key in the Map or the List (on the bean
specified by name).

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 24

3.8 collection:isEmpty
Will render body only if the collection is empty.

Syntax

<collection:isEmpty
 name="..."?
 property="..."?>
 ...
</collection:isEmpty>

Attributes

name
Name of the collection to check if its empty.

property
Property to get the wanted collection from the bean specified by the name attribute.

3.9 collection:isNotEmpty
Will only render body if the collection contains 1 or more elements.

Syntax

<collection:isNotEmpty
 name="..."?
 property="..."?>
 ...
</collection:isNotEmpty>

Attributes

name
Name of the collection to check if it contains elements.

property
Property to get the wanted collection from the bean specified by the name attribute.

3.10collection:pageByPage
Will make it possible to display the elements in a collection over several pages. You specify how many
objects to be shown on each page, how many pages to be displayed in the navigator.

Two attributes will be made available: "page" and "nav".

page: which will be a java.util.List of all the elements to be displayed on this page.

nav: which will be a neo.taglib.collection.PagesList of all the pages to be displayed in the
navigator.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 25

Syntax

<collection:pageByPage
 name="..."?
 navSize="..."?
 pageNumber="..."?
 pageSize="..."?
 property="..."?/>

Attributes

name
Name of bean to create the list from.

property
Will get the property from the bean specified by the name attribute. To use this attribute name
must also must be defined.

navSize
Size of the navigator.

pageNumber
Number of the page to be shown.

pageSize
Size of the pages to be shown. Number of element to show on each page.

3.11collection:remove
Removes a object from the specified Collection.

If the collection is of type Map we will remove the key from the map. If the value specified is not equal
to any keys in the Map, nothing will happened.

Syntax

<collection:remove
 collection="..."
 name="..."?
 property="..."?
 value="..."?/>

Attributes

collection, mandatory
The collection we are about to remove an object from.

value
Value to be removed from the specified Collection.

name
Name of an bean to be removed from the specified collection. If the property attribute also is set,
we will get that property from the bean specified here.

property
Specifies the name of the property to be removed from the collection (on the bean specified by
name).

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 26

3.12collection:string
This is a usefull tag if you wan to convert a Collection eiter to or from a String. It can do both.
This is decided by the method attribute.

If the operation is split you can choose the type of object to be returned. This is done by the type
attribute.

Syntax

<collection:string
 delimiter="..."?
 id="..."?
 keyValueDelimiter="..."?
 method="..."?
 name="..."?
 property="..."?
 type="..."?
 value="..."?/>

Attributes

id
Name of the String or Collection that is returned from this tag. This is determined by the
method attribute.

value
The object to convert. This must be of the correct type acording to current method.

name
The key value to look up an existing bean. There is two ways of using this bean.

Either the bean must be of type collection or String. This depends on which type of
operation you intend to do.

Or the bean must have a property to get the wanted object. Then the attribute property must
be used.

Using this attribute excludes the use of the value attribute.

property
Identifies the JavaBeans property (of the bean identified by the name attribute) to get the Object
to be used by the tag. If not specified, the bean identified by the name attribute itself will be used
as the value.

method
This attribute will define the usage of this tag.

Valid values:

If set to split it will take a String, split it and then add all items into the Collection. If it is
set to merge the tag will take the specified Collection and merge all itemes into a String.

type
Will define what type of Collection the tag will return. You can either specify the class or just
type either collection or map.

If you specify a class is must be an instance of java.util.Collection or java.util.Map

This attribute is only in use when method is set to split.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 27

delimiter
What delimiter to be used to separate to elements when converting a collection to a String.

If not specified the default value will be used. The default value is ,

keyValueDelimiter
This delimiter will only be used when converting a String to a Map. It is used to separate the
key/value pair.

If not specified will the default value be used. The default value is =

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 28

4 publication Tag Library

This tag library contains tags that are working with the Publication object.

Syntax to import the publication tag library:

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-publication"
 prefix="publication" %>

We usually use publication as prefix to this tag library.

4.1 publication:use
Sets the "current" publication to a different publication within this tag. Normally the default
publication is set in the index.jsp and article.jsp files.

Almost all the other tags expect that it is within context of a publication.

You must use either the id or the name attribute to specify the publication.

Syntax

<publication:use
 publicationId="..."?
 publicationName="..."?>
 ...
</publication:use>

Attributes

publicationId
Id of the publication to be the current publication. You can not this together with
publicationName.

publicationName
Name of the publication to be the current publication. You can not this together with
publicationId.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 29

5 profile Tag Library

All tags works with profiles in one way or another.

The essential tags in this taglib are:

• attribute

• present

• use

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-profile" prefix="profile" %>

We usually use profile as prefix to this tag library.

Common Attributes

To specify the PresentationProfile to be used, you must use one of the following attributes:
profileId or name/property.

In most of the tags it is mandatory to specify either profileId or name/property.

profileId
The profileId attribute will get the PresentationProfile with that name.

Using profileId excludes the use of the attributes:name/property

name
The key value to look up an existing bean. There is two ways of using this bean.

Either the bean must be of type
com.escenic.profile.presentation.PresentationProfile.

Or the bean must have a property to get the PresentationProfile. Then the attribute
property must be used.

Using this attribute excludes the use of the attribute: profileId.

property
Identifies the JavaBeans property (of the bean identified by the name attribute) to get the
PresentationProfile to be used by the tag. If not specified, the bean identified by the name
attribute itself will be used as the value.

This attribute can not be used without the name attribute.

5.1 profile:define
Will create both an scripting variable and a page scoped bean from the specified profile. Therefore the
tag way look a bit like <profile:use>, except that it does not set the default profile.

Syntax

<profile:define
 id="..."
 name="..."?

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 30

 profileId="..."?
 property="..."?
 toScope="..."?/>

Attributes

id, mandatory, no runtime expressions
Name of the scripting-variable we make.

toScope
Identify the JSP scope within which the Presentationprofile-bean will be created. If not
specified, then the PresentaionProfile-bean is created in page scope.

Allowed values are:

name
Name of the bean to define.

property
Property to get the PresentationProfile.

profileId
Name of the profile to be used.

5.2 profile:exist
Checks if a profile, specified by the profileName attribute, exist. If the profile exist the body if this tag
will be rendered.

Syntax

<profile:exist
 title="...">
 ...
</profile:exist>

Attributes

title, mandatory
Name of the profile to check.

5.3 profile:notExist
Checks if a profile, specified by the profileName attribute, exist. If the profile exist the body if this tag
will be rendered.

Syntax

<profile:notExist
 title="...">
 ...
</profile:notExist>

Attributes

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 31

title, mandatory
Title of the profile to check.

5.4 profile:present
Checks if the request contains a profile, and evalutates the nested body content of this tag only if a
profile is present.

Syntax

<profile:present>
 ...
</profile:present>

5.5 profile:notPresent
Checks if the request contains a profile, and evalutates the nested body content of this tag only if a
profile is not present.

Syntax

<profile:notPresent>
 ...
</profile:notPresent>

5.6 profile:use
Sets the current profile within this tag. All profile tags that relate to the current profile in the body
of this tag will use the specified profile. This tag will make any tags within its body use this profile.

Syntax

<profile:use
 name="..."?
 profileId="..."?
 property="..."?
 title="...">
 ...
</profile:use>

Attributes

title, mandatory
Title of the profile to use.

name
Name of an bean to specify profile to be set as default profile.

property
Property used to find the profile to be set as default profile.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 32

profileId
Name of the profile used to to be set as default profile.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 33

6 section Tag Library

This tag library contains tags that work on the current or specified section. The tags can get
information from the section, expire the surrounding jsp-cache, set a new default section or get
different Views. For more information about jsp-cache see chapter 8, about View see chapter 9.

The essential tags in this taglib are:

• use

• parameter

All tags are working with a section-object, except <section:parameter>. The default behavior
is that they will use the current section. This can be overridden by the common attributes discussed
below.

Syntax to import the section tag library:

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-section" prefix="section" %>

We usually use section as prefix to this tag library.

The following tags has been removed because they either did not work or was not finished:
<section:hasAgreement>, <section:validateAgreement> and <section:checkVirtual>. They may be
reintroduced later on.

Common Attributes

If you want to specify which section to work with instead of using the default section, you can do so by
using one our common attributes. This is the possible attributes: section, sectionId, uniquename
and name/property. They are mutually exclusive(except name/property).

When using name/property you must specify name, but property is not mandatory.

section
Must be a neo.xredsys.api.Section object.

Using section excludes the use of the attributes: uniqueName, sectionId and name/
property.

sectionId
The sectionId as an String in this attribute.

Using sectionId excludes the use of the attributes: section, uniqueName and name/
property.

uniqueName
The unique name of the section.

Using uniqueName excludes the use of the attributes: section, sectionId and name/
property.

name
The key value to look up an existing bean. There is two ways of using this bean.

Either the bean must be of type neo.xredsys.api.Section.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 34

Or the bean must have a property to get the Section. Then the attribute property must be
used.

Using name excludes the use of the attributes: section, uniqueName and sectionId.

property
Identifies the JavaBeans property (of the bean identified by the name attribute) to get the
Section to be used by the tag. If not specified, the bean identified by the name attribute itself
will be used as the value.

This attribute can not be used without the name attribute.

6.1 section:ancestorView
Creates an ancestor view for the given section.

Syntax

<section:ancestorView
 height="..."?
 id="..."
 includeRoot="..."?
 name="..."?
 property="..."?
 section="..."?
 sectionId="..."?
 uniqueName="..."?/>

Attributes

id, mandatory, no runtime expressions
The name of the page-scoped attribute to create with this view.

section
The section to be used to get the ancestor view.

sectionId
Id of the section to be used to get the ancestor view.

uniqueName
Unique name of the section to be used to get the ancestor view.

name
Name of bean to get section to be used to get the ancestor view.

property
Property to get the section to be used to get the ancestor view. This attribute can not be used
without the name attribute.

height

includeRoot
Optional boolean value specifying if the root section is to be included in the view. The default is
'true'.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 35

6.2 section:expiresCache
Expires the nearest cache element if the specified section is updated.

This tag will locate the enclosing <util:cache> tag and expire that cache. If there is no enclosing
<util:cache> nothing will happened.

If you repeat the tag, the cache will be expired if either one of the specified sections are updated.

See also

util:cache (section 8.1)

Syntax

<section:expiresCache
 name="..."?
 property="..."?
 section="..."?
 sectionId="..."?
 uniqueName="..."?/>

Attributes

section
The section to be used to expire the cache.

sectionId
Id of the section to be used to expire the cache.

uniqueName
Use the section with this unique name instead of using the "default" section.

name
Name of bean to get section to be used to expire the cache.

property
Property to get the section to be used to expire the cache. This attribute can not be used without
the name attribute.

6.3 section:recursiveView
Create a view that includes the specified section, and all of its sub-sections, optionally limited to a
level. If no section is specified, the "default" section will be used as the base section.

Syntax

<section:recursiveView
 depth="..."?
 id="..."
 includeRoot="..."?
 name="..."?
 property="..."?
 section="..."?
 sectionId="..."?

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 36

 uniqueName="..."?/>

Attributes

id, mandatory, no runtime expressions
The name of the page-scoped attribute to create with this view.

depth
Include this number of levels in the view. Setting depth to 1 limits the view to the root element,
while setting it to 2 includes the immediate children.

includeRoot
Optionally, specify whether the base section (specified by the section or sectionName attributes)
is to become part of the view. By default, this value is "true", and can be set to either "true" or
"false".

section
The section to be used to get the recursive view.

sectionId
Id of the section to be used to get the recursive view.

uniqueName
Unique name of the section to be used to get the recursive view.

name
Name of bean to get section to be used to get the recursive view.

property
Property to get the section to be used to get the recursive view. This attribute can not be used
without the name attribute.

6.4 section:use
Sets the "current" section to a different section within this tag. All section tags that relate to the current
section in the body of this tag will use the specified section instead of any previous current section.
Normally, the default-section is set by the template mechanism, but for a portion of JSP it may be
desirable to use a different section. This tag will make any tags within its body use this section. One of
section or sectionName must be specified. The section will be also be available using the "apisection"
request attribute.

The section:use tag does not alter the default presentation pool. Tags that operate on the pool,
rather than on the section (e.g. <template:element>), will not work as expected unless the
<template:defaultPresentationPool> is used as well.

Syntax

<section:use
 name="..."?
 property="..."?
 section="..."?
 sectionId="..."?
 sectionIdInt="..."?
 source="..."?
 sourceId="..."?
 uniqueName="..."?>

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 37

 ...
</section:use>

Attributes

section
A scriptlet that returns the section object to be used as the new "default" section.

sectionId
Optionally,specify Section ID (a numeric string) of an attribute that contains a Section object to
be used as the new "default" section.

uniqueName
The unique name of the section that is to be the new "default" section. This section will be
loaded from the current default publication.

name
The name of an attribute that contains a Section object to be used as the new "default" section.

property
Specifies the name of the property to get the wanted Section on the bean specified by name. It
makes no sense specifying property if name is not set.

This value may be a simple, indexed, or nested property reference expression. If not specified,
we expect that the bean specified by name is a Section.

source
Source of the section to set as "default" section. This attribute can not be used without the
sourceId attribute.

sourceId
SourceId used to identify the section to be set as "default" section. This attribute can not be used
without the source attribute.

sectionIdInt
The Section ID (an int) of an attribute that contains a Section object to be used as the new
"default" section.

6.5 section:view
Create a view that includes this section only. Normally, this tag is only used together with other views,
using the add and subtract tags.

Syntax

<section:view
 id="..."
 name="..."?
 property="..."?
 section="..."?
 sectionId="..."?
 uniqueName="..."?/>

Attributes

id, mandatory, no runtime expressions
The name that will be given to this view, in the page scope.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 38

section
The section to be used to get the view.

sectionId
Id of the section to be used to get the view.

uniqueName
Unique name of the section to be used to get the view.

name
Name of bean to get section to be used to get the view.

property
Property to get the section to be used to get the view. This attribute can not be used without the
name attribute.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 39

7 template Tag Library

This tag library contains tags to include ECE templates and other JSP files. Addition to this there are
tags to set different default objects(as PresentationArticle and PresentationPool), and some simple
testing.

The tags used to set the default objects are normally only invoked once per request. This is typically
done in the index.jsp or article.jsp files.

The essential tags in this taglib are:

• call

• parameter

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-template" prefix="template" %>

We usually use template as prefix to this tag library.

7.1 template:call
Inserts the template denoted by the "file" attribute. On its own it functions purely like a
<jsp:insert> tag, but this tag can have nested parameter tags, which are set for the duration of this
call, and are restored to their old values, if they had any before the call.

See also

template:parameter (section 7.2)

Syntax

<template:call
 file="..."?
 fileName="..."?
 fileProperty="..."?
 pluginName="..."?
 pluginProperty="..."?
 prefix="..."?
 sectionParameter="..."?
 servletContext="..."?
 suffix="..."?>
 <template:parameter.../>
</template:call>

Attributes

file
The context-relative path of the JSP file to include. The mentioned JSP file will be included
at this point in the resulting page, and any nested parameters will be made available to the
mentioned page.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 40

The parameters are stored in the request scope for the duration of the call. The parameters will
be restored to their old values when the target JSP file is finished, even if those values have been
changed by the target JSP file.

fileName
Name of the bean that contains the name of file to be called. The mentioned JSP file will be
included at this point in the resulting page, and any nested parameters will be made available to
the mentioned page.

The parameters are stored in the request scope for the duration of the call. The parameters will
be restored to their old values when the target JSP file is finished, even if those values have been
changed by the target JSP file.

This attribute can be used together with 'filePropery'.

fileProperty
The property to get the name of the file to be included.

This attribute can not be used without the 'fileName' attribute.

sectionParameter
The name of the Section Parameter that contains the context-relative path of the JSP file to
include. sectionParameter simply asks the Section for the parameter of the specified name, and
assumes that it is a context- relative file-name. See the "file" attribute for more information.

prefix
Prefix to add to the file specified by either the file-attribute or the sectionParameter-attribute.

suffix
Suffix to add to the file specified by either the file-attribute or the sectionParameter-attribute.

pluginName
Will only insert the jsp page if the named plugin is installed.

This attribute can either be the name itself or the name of a bean to get the name from. If it is a
bean the pluginPropty must be used to get the name of the plugin.

pluginProperty
The property to get the name of the plugin.

This attribute can not be used without the pluginName property.

servletContext
URI path to the servlet context in which to find the file to call.

Use this when the file is in another webapp (war-file) and the ServletContext should be switched
to this new webapp before calling the file. The uripath is the context root of the webapp, e.g. "/
escenic". The file name is relative to the new context.

IMPORTANT NOTICE: The servlet specification is vague about the effects of changing
context and then including a resource. Differences between application servers are to be
expected. Also note that the session scope will usually be unavailable while in the other
ServletContext.

Note that in order to use this feature on a Tomcat server, the following configuration must be
added to the Host element of conf/server.xml:

 <DefaultContext crossContext="true"/>

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 41

7.2 template:parameter
Defines a parameter to be passed on to a template with the "call" tag. The id defines the name of the
parameter, and one of name, value or page must be specified to define the value of the parameter.

See also

template:call (section 7.1)

Syntax

<template:parameter
 key="..."
 name="..."?
 property="..."?
 scope="..."?
 value="..."?>
 ...
</template:parameter>

Attributes

key, mandatory
The name of the parameter that is to be passed to the called template.

name
The name of the attribute to use as the value of this parameter. The rules for
pageContext.findAttribute will be used if the "scope" attribute is set to null.

property
Property to get from the specified bean with the name attribute. This attribute can not be used
without the name attribute.

scope
The scope in which to search for when using the "name" parameter. This optional parameter
defaults to a value which means that all scopes will be searched. The scope attribute may be set
to "page", "request", "session", "application", or nothing.

Default the scope is set to "request".

value
The value of the parameter to be passed to the parameter. This is a simple way of passing strings
to templates.

7.3 template:serviceParameter
Includes the file denoted by the value of the request attribute defined by the name attribute. Typically,
this tag is used inside a JSP file that is called from a "template:call" tag that includes a template:param
name="xxx" file="yyy" tag. In this case, a template:serviceParameter name="xxx" would include the
"yyy" file.

See also

template:call (section 7.1), template:parameter (section 7.2)

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 42

Syntax

<template:serviceParameter
 name="..."/>

Attributes

name, mandatory
The name of the attribute that holds the name of the file to service. Normally, this attribute is set
from a template:param file="something" tag in the calling JSP file.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 43

8 util Tag Library

This tag library contains tags that do not fit into any other categories. There are tags to do contitional
testing, handle iterations, cache management etc.

The essential tags in this taglib are:

• cache

• switch

• toggle

• valueof

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-util" prefix="util" %>

We usually use util as prefix to this tag library.

8.1 util:cache
Use this tag to cache a block of JSP code. Typically, you use this around code that is resource hungry,
such as iterating through 200 sections. Use the JSP statistics functionality to guide you in using this
tag.

To explicity expire a cached block (before the cache tage's own expire time), you can to use these tags:

• <article:expiresCache>

• <section:expiresCache>

Be careful not to create nested <util:cache> elements as this may cause significant performance
problems. Beware of templates calling/including other templates where the caller has a
<util:cache> around the callee, which itself also has a <util:cache> element.

If you get a JSP with <util:cache> taking just over 10 seconds to render, typically 10023ms, it is
probably because of nested <util:cache> elements.

See also

article:expiresCache (section 2.2), section:expiresCache (section 6.2)

Syntax

<util:cache
 blocking="..."?
 blockingTimeout="..."?
 expireTime="..."?
 id="..."
 includeArticle="..."?
 includeSection="..."?>
 ...
</util:cache>

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 44

Attributes

id, mandatory
Each cached fragment must have an id. The id is used to identify thecached fragment.

The id can be any string. If two or more instances of the cache tag have identical ids, they will
share the cached content as well.

Typically you want to create a unique id for every instance of the cache tag. You can do so for
example by using section ids,article ids, string constants, or a combination of them.

includeArticle
Will make it easier to create a unique id. If set to true the tag will automaticly include the
current article into the key.

The tag will handle if there is no current article, but the id will not be unique.

Default it is set to false.

includeSection
Will make it easier to create a unique id. If set to true the tag will automaticly include the
current section into the key.

The tag will handle if there is no current section, but the id will not be unique.

Default it is set to false.

expireTime
Sets the how long we will wait until the cached items are expired from the cache. The time is by
default in minutes. You can changed that to seconds, minutes or hour by adding a s,m or h after
wanted time.

e.g. 120s means 120 seconds and 2h means 2 hours

Please note that setting the attribute to 1 second as this is not the same as disabling the cache.

blockingTimeout
Sets how long we will wait for the cached item to be created. This is only relevant during system
startup. The only reason to set this, is if you have got a resource that normally takes more time
than the default value to create. The value is in milliseconds. Set to 0 to block forever, but this
may potentially lock your system and should be avoided.

Default is 10 seconds.

blocking
Set this to "false" to avoid waiting for a cached item to finish loading. This will leave the cached
part of the page empty. This option is only relevant during startup of the system.

Default is to block waiting for the cached item to finish. Timeout is set with blockingTimeout.

8.2 util:expiresCache
Expires the cache if there is an event on the specified object.

See also

util:cache (section 8.1)

Syntax

<util:expiresCache

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 45

 object="..."/>

Attributes

object, mandatory
The object we want the cache to be depended on

8.3 util:includeExtContent
Retrieves content from a page specified by the given URL. URL's has to be absolute, and can not be to
a frame-set. If the HTTP Get times out(see timeout attribute) or failes for any other reason, body of tag
will be shown.

The content of the URL can be cached by setting the useCaching attribute=true. Also url's that failes
will be cached. this means that this url will be 'marked' as failed until the background job retrieves
content succesfully or content is thrown from cache.

• If content has been in cache longer than validTime without beeing accessed, expire content.

• If content has been in cache longer than refreshTime, try to retrieve new version of content.

• if refreshTimeout > timeout this value is used as timeout. This makes it possible to let the
background job retrieve content from slow sites that might have timed out on first atempt.

validTime,refreshTime and refreshTimeout is set in the /neo/io/services/ExternalContentManager
component

Syntax

<util:includeExtContent
 cookie="..."?
 includeAll="..."?
 timeout="..."?
 url="..."
 useCaching="..."?>
 ...
</util:includeExtContent>

Attributes

url, mandatory
The URL of the page where content is to be retrieved from

includeAll
Return all content, without removing <HTML>, <HEAD> and <BODY>-tags. Possible values
are true or false. The default value is false.

useCaching
Enable caching of the retrieved content. See general description for details.

timeout
The number of milliseconds before cancel retrieval of content. Body of tag will be shown if
timeout is reached. If not set default value from /neo/io/services/ExternalContentManager
component will be used

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 46

cookie
use as in following example

 <bean:cookie id="test" name="testCookie5" value=""/>
 <bean:cookie id="test2" name="testCookie6" value="">

 <util:includeExtContent
 ...
 ...
 ...
 cookie="<%=new javax.servlet.http.Cookie[] {test,test2}%>"
 >

8.4 util:image
Image tag. Used to get image height and width.

Syntax

<util:image
 file="..."?
 id="..."
 name="..."?
 property="..."?>
 ...
</util:image>

Attributes

id, mandatory, no runtime expressions
id attribute

file
file attribute

name
name attribute

property
property attribute

8.5 util:logMessage
Will write messages/comments to either the browser log or inline html comments in the the html page.
This tag is meant to be used by the template developers when creating the JSP-pages.

The tag can make it easier to locate error in the JSP-pages.

When sending messages to the BROWSER-log use the message attribute, and when creating inline
html-comments use the comment attribute.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 47

The messages and comments will only be displayed when the parameter:'debug=true' is added to the
url, e.g. www.escenic.com?debug=true

If the comment attribute is empty, the body content of the tag will be used instead.

Syntax

<util:logMessage
 category="..."?
 comment="..."?
 commentStyle="..."?
 level="..."?
 message="..."?>
 ...
</util:logMessage>

Attributes

category
The category all messages will be logged to

This attribute can only be used together with the message attribute.

comment
The comment will be added to the jsp page in the specified comment style.

commentStyle
Style of the comment. The default comment style is html-comments. This attributes allows you
to change the comment style.

Allowed styles: html, xml, css, javaScript.

This attribute must be used together with the comment attribute.

level
Debug level. Default value is debug.

This attribute can only be used together with the message attribute.

message
The message to be written to the browser log.

8.6 util:lookup
Looking up a component in Nursery

Syntax

<util:lookup
 id="..."
 name="..."
 scope="..."?
 type="..."/>

Attributes

id, mandatory
Id of the object we are looking up

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 48

name, mandatory
Name of the component

type, mandatory
type of the component

scope
Scope of the component

8.7 util:pager
Sets startIndex, endIndex, displayStartIndex and totalSize attributes which can be used for paging.

Syntax

<util:pager
 length="..."
 name="..."
 startIndex="..."?
 startIndexName="..."?/>

Attributes

name, mandatory
The name of the attribute that contains object to be used for paging. This can either be an array
or a collection

length, mandatory
Specifies the length of the pageintervall

startIndexName
Specifies the name of the attribute that contains the start index, i.e. the first item to display on
the page. If not set, then the "start" request parameter is checked.

startIndex
Specifies the start index, i.e. the first item to display on the page. If not set, then startIndexName
is checked.

8.8 util:parameter
Defines a parameter to be passed on to the "sendMail" tag. 'name' defines the name of the parameter,
and 'value' defines the string-value of the parameter. Valid names are mailTo, mailCc, mailBcc,
mailFrom, mailerName, subject, url, plainContent, htmlContent, charset and attachments. Minimum
requirements to send a mail are mailTo, MailFrom and content. The charset parameter will override
the default charset defined in the /neo/util/PostCardSender component.

See also

util:sendMail (section 8.12)

Syntax

<util:parameter

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 49

 key="..."
 name="..."?
 property="..."?
 scope="..."?
 value="..."?>
 ...
</util:parameter>

Attributes

key, mandatory
The name of the parameter that is to be passed onto the "sendMail" tag. The allowed parameters
are: mailTo, mailCc, mailBcc, mailFrom, mailerName, subject, url, plainContent, htmlContent
and attachments.

name
The name of the attribute to use as the value of this parameter. If not scope is specified we
will look for the specified object in all scopes. This attribute can not be used together with the
"value" attribute.

property
Property to get from the specified bean with the name attribute. This attribute can not be used
without the name attribute.

scope
The scope in which to search for when using the "name" parameter. This optional parameter
defaults to a value which means that all scopes will be searched. The scope attribute may be set
to "page", "request", "session", "application", or nothing.

value
The value of the parameter to be passed to the parameter. This attribute can not be used
together with the "name" and "property" attributes.

8.9 util:pluginResources
Executes the body of the tag for each plugin resource that has a resource matching the specified
attributes.

Syntax

<util:pluginResources
 area="..."?
 id="..."
 target="..."?
 task="..."?
 type="..."?/>

Attributes

id, mandatory, no runtime expressions
The name of the nested scripting variable used to hold the resource object that contains the uri
and label (or labelKey indicating the key of a label in a resource bundle).

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 50

type
Used to filter based on the type of resource requested. If type is not specified, all types will be
considered. Types are typically "internal-link" or "external-link"

target
Used to filter based on the target of resource requested. If target is not specified, all targets will
be considered. Target is typically "escenic" or "admin"

task
Used to filter based on the task of resource requested. If task is not specified, all tasks will be
considered. Tasks are target-specific. Each target typically has certain entry points.

area
Used to filter based on the area of resource requested. If area is not specified, all areas will be
considered. Areas are target/task specific.

Scripting variable (id)

A scripting variable will be defined using the value of the id attribute as its name. The variable is of
type java.util.Collection.

8.10util:profiler
Adds JSP Profiling for a fragment of JSP code. The profiling will only be effective if the profiling has
been enabled as described in the page developer's guide.

Profiling should be specified for any page where the request has been forwarded. Typically, this
happens to be the wireframe file, which is often the outermost page in a request. The path attribute
should be set in this outermost tag.

<util:profiler path="/template/ver1/wireframe/normal.jsp">
 <jsp:include ... />
</util:profiler>

For profiling fragments of a page (for example a loop, or a computationally intensive part), use the
fragment attribute:

<util:profiler fragment="compute-1">
 <% new Baby(); %>
</util:profiler>

Profiling fragments can be useful to track down performance problems in a particular JSP template.
It can also be used when the page contains branches (for example <util:switch> tags) where there
are several distinct parts are executed independently of each other.

Syntax

<util:profiler
 fragment="..."?
 path="..."?>
 ...
</util:profiler>

Attributes

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 51

path
The fully qualified path of the current JSP template. This attribute should only be used in the
outer-most profiling tag. collector.

path may not be specified if fragment is specified

fragment
An arbitrary name of a fragment of the JSP template. Fragments are typicaly used to profile
portion of the JSP.

fragment may not be specified if path is specified

8.11util:rewrite
A simple tag to rewrite/calculate the path to specified file. The calculate path will be returned as a
java.lang.String.

There are two different types of paths you can get from this tag. One is the url to the file, and the
other is the file path to the file.

There are several roots that can be used to calculate the path.

• publication

• template

• multimedia

• section

Syntax

<util:rewrite
 file="..."
 id="..."?
 root="..."
 type="..."?/>

Attributes

id, no runtime expressions
Id is not mandatory. If specified the path is returned as a scripting variable (and associated page
scope attribute). If not specified the path will be written.

file, mandatory
Name of the file.

root, mandatory
The root of the file. Allowed values:

type
The type of path. Allowed values:

Default value is url.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 52

8.12util:sendMail
Sends mail with specified content to specified recipients. Content can be plain text, html or content
from a specified URL.

See also

util:parameter (section 8.8)

Syntax

<util:sendMail
 type="..."?>
 <util:parameter.../>
</util:sendMail>

Attributes

type
Determines what kind of content a mail can have. Allowed values are:

Content-type of entire message is multipart/alternative.

8.13util:toggle
Sets up a toggle instance, which allows a template developer to repeatedly switch between two or more
strings.

See also

util:toggleNext (section 8.14)

Syntax

<util:toggle
 declare="..."?
 id="..."
 items="..."?
 name="..."?
 toScope="..."?
 value="..."?/>

Attributes

id, mandatory
Used to identify the toggle that will be made available as a scripting-variable.

NOTE: When declear is set to 'true', it is illegal to use a runtime expression in the 'id' attribute.

declare, no runtime expressions
Turn declaration of scripting-variables on/off. If set to 'true' will scripting-variables be created.
Else it will not be created.

Default is set to true.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 53

items
A java.util.List of values that are to be toggled. The Toggle will be initialized with the first value
in the list. If the list does not contain String elements, it will convert them to strings first.

value
A comma separated list of values that are to be toggled. The Toggle will be initialized with the
first value in the list, and all of the values will be trimmed of leading and trailing whitespace
before being used.

name
The name of a scoped attribute that will be used as the list of names. The attribute can be a List,
or a comma separated string.

toScope
To which scope the toggle will be put. Allowed values are: page, request, session and application.

8.14util:toggleNext
Advances the specified Toggle one step forward in its list. If the Toggle reaches the end, then it
automatically restarts at the beginning.

See also

util:toggle (section 8.13)

Syntax

<util:toggleNext
 name="..."?
 scope="..."?
 toggle="..."?/>

Attributes

name
The name of the attribute that contains the Toggle object. One of name or toggle must be
specified.

toggle
A scriptlet that evaluates to the Toggle object to advance. One of name or toggle must be
specified.

scope
On which scope the tag will look for the toggle. Allowed values are: page, request, session and
application.

8.15util:click
Places a click counter on a link

Syntax

<util:click

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 54

 categoryName="..."
 categoryProperty="..."?
 id="..."?
 systemName="..."
 systemProperty="..."?
 urlName="..."
 urlProperty="..."?/>

Attributes

id, no runtime expressions
The id we want to use to look up the scripting variable set by this tag.

The id is not required here. If its not use the tag will simply print out the result.

urlName, mandatory
The url to place a click counter on

urlProperty
The property

systemName, mandatory
The click counter system to use

systemProperty
The property

categoryName, mandatory
The name to place the link in

categoryProperty
The property

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 55

9 view Tag Library

The essential tags in this taglib are:

• iterate

• relationships

 <%@ taglib uri="http://www.escenic.com/taglib/escenic-view" prefix="view" %>

We usually use view as prefix to this tag library.

9.1 view:add
Add two views together, to produce a view that includes the objects in both views. If any items were in
both views, the new view will only include one of the objects.

Syntax

<view:add
 id="..."
 nameView1="..."?
 nameView2="..."?
 propertyView1="..."?
 propertyView2="..."?
 view1="..."?
 view2="..."?/>

Attributes

id, mandatory, no runtime expressions
The name of the page scoped attribute to create with the result view.

view1
The first view to add. This must be a scriptlet that returns a View object.

nameView1
Name of bean to be used to get view1.

propertyView1
Name of property to get view1 from the bean specified by the nameView1-attribute.

view2
The second view to add. This must be a scriptlet that returns a View object.

nameView2
Name of bean to be used to get view2.

propertyView2
Name of property to get view1 from the bean specified by the nameView2-attribute.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 56

9.2 view:subtract
Subtract a view from another view, to produce a view that includes the difference of two views. Any
item in view1 will be included in the result view, except for any item in view1 which is also in view2,
which will not be included in the result view.

Syntax

<view:subtract
 id="..."
 nameView1="..."?
 nameView2="..."?
 propertyView1="..."?
 propertyView2="..."?
 view1="..."?
 view2="..."?/>

Attributes

id, mandatory, no runtime expressions
The name of the page scoped attribute to create with the result view.

view1
The view to subtract from. This must be a scriptlet that returns a View object.

nameView1
Name of bean to be used to get view1.

propertyView1
Name of property to get view1 from the bean specified by the nameView1-attribute.

view2
The view which will be removed from the first view. This must be a scriptlet that returns a View
object.

nameView2
Name of bean to be used to get view2.

propertyView2
Name of property to get view2 from the bean specified by the nameView2-attribute.

9.3 view:iterate
Iterate over each item in a view. The body of this tag will be executed once for each item in the view.

Syntax

<view:iterate
 depth="..."?
 id="..."
 length="..."?
 name="..."?
 offset="..."?
 property="..."?
 type="..."?
 view="..."?>

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 57

 <view:relationships.../>
</view:iterate>

Attributes

id, mandatory, no runtime expressions
The current item in the view will be exported using a variable with this name. In addition, the
page-scoped attribute of this name will also contain the current item.

depth
The maximum depth to be iterated through in this tag. Elements that are deeper will not be
iterated over. If it is not present there will not be any limit on the depth.

length
The maximum number of entries (from the view) to be iterated through in this tag. If not
present, there will be no limit on the number of iterations performed.

offset
The zero-relative index of the starting point at which entries from the view will be iterated
through. If not present, zero is assumed (meaning that the view will be iterated from the
beginning).

type, no runtime expressions
The variable created will be of the type specified by this attribute. If this variable is not specified,
the variable will be exported as a generic object.

view
The view to iterate over. It must be specified by a scriptlet that returns a View object.

name
Name of bean that contains the view.

property
Name of the property to get the view from the bean specified by the name-attribute.

9.4 view:forEachLevel
When iterating over a view of a hierarchy, this tag makes it possible to repeat a certain text once for
each "level". If this tag contains the text "*", then this tag will print out one "*" for each level that the
iteration is doing.

Syntax

<view:forEachLevel
 startAt="..."?>
 ...
</view:forEachLevel>

Attributes

startAt
What level should we "start" at? If this is not specified, the root of the hierarchy will be used.
If this is specified as a number, the number will be subtracted from the level, before iteration
starts.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 58

9.5 view:relationships
When iterating over a view of some hierarchy, this tag makes a Relationship object available in the
page context. This Relationship object can tell a page developer if the currently iterated item is a
sibling of, a parent or child of, an ancestor or descendant of any other specified item.

The relationships tag must be used from within an "iterate" tag in the same tag library.

The tag allows the page developer to specify what item it is to check up against, by specifying the
name/scope attributes or the node attribute.

Syntax

<view:relationships
 id="..."
 name="..."?
 node="..."?
 property="..."?
 scope="..."?>
 <view:first.../> <view:last.../>
</view:relationships>

Attributes

id, mandatory, no runtime expressions
The name of the page-context attribute to which the newly created Relationships object will be
created.

name
The name of an attribute that contains the item to check for relationships. All scopes are
checked when looking for the node; this behavior can be changed by specifying the "scope"
attribute

property
Name of the property to get the item to check for relationships.

This attribute can not be used without the the name attribute.

scope
The scope in which to look for the base node.

node
The actual item to check for relationships.

Scripting variable (id)

A scripting variable will be defined using the value of the id attribute as its name. The variable is of
type com.escenic.common.util.tree.Relationships.

9.6 view:first
Will render body of this tag only if we are first element on a level.

This is an example on how you would use this tag.

<%@ taglib uri="/WEB-INF/escenic-view.tld" prefix="view" %>

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 59

<%@ taglib uri="/WEB-INF/escenic-section.tld" prefix="section" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<section:recursiveView id="aView" uniqueName="ece_frontpage" />

<view:iterate id="current" name="aView">
 <view:relationships id="relation" name="section">
 <view:first>
 <div class="level">
 </view:first>
 <div class="section">
 <bean:write name="current" property="name" />
 </div>
 <view:last>
 </div>
 </view:last>
 </view:relationships>
</view:iterate>

Syntax

<view:first>
 ...
</view:first>

9.7 view:last
Will render the body of this tag only if we are the last element on a level. This tag will iterate the
amount of time needed to close the content openend in it's sibling tag.

This is an example on how you would use this tag.

<%@ taglib uri="/WEB-INF/escenic-view.tld" prefix="view" %>
<%@ taglib uri="/WEB-INF/escenic-section.tld" prefix="section" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<section:recursiveView id="aView" uniqueName="ece_frontpage" />

<view:iterate id="current" name="aView">
 <view:relationships id="relation" name="section">
 <view:first>
 <div class="level">
 </view:first>
 <div class="section">
 <bean:write name="current" property="name" />
 </div>
 <view:last>
 </div>
 </view:last>
 </view:relationships>
</view:iterate>

Syntax

<view:last>

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 60

 ...
</view:last>

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 61

10 tag Tag Library

This library contains tags that operate on PresentationTag beans.

In order to use these tags in a JSP file you must include the following prefix declaration in the file:

<%@ taglib uri="http://www.escenic.com/taglib/escenic-classification" prefix="tag" %>

tag is the prefix normally used for this tag library.

10.1tag:use
Loads a tag specified with the tagid attribute and assigns it to the variable specified with the var
attribute.

Syntax

<tag:use
 tagId="..."
 var="...">
 ...
</tag:use>

Attributes

tagId, mandatory
The scheme or URI of the tag to be loaded.

var, mandatory, no runtime expressions
The name of the scripting variable to which the specified tag is to be loaded.

Escenic Tag Library Reference

Copyright © 2003-2018 Escenic AS Page 62

11 captcha Tag Library

11.1captcha:recaptchaHTML
Generates HTML template that shows the ReCaptcha interface for captcha verification.

Syntax

<captcha:recaptchaHTML
 lang="..."?
 theme="..."?/>

Attributes

theme
Look and feel of the ReCaptcha interface will be determined by this. The value is the supported
values of theme configuration option by ReCaptcha (e.g. 'red', 'white', 'blackglass', 'clean').
Please see http://code.google.com/apis/recaptcha/docs/customization.html for details on
theme options.

lang
The language to be used in the ReCaptcha interface. The value is the supported values of lang
configuration options by ReCaptcha (e.g. 'en', 'nl', 'fr', 'de', 'pt', 'ru', 'es', 'tr'). Please see http://
code.google.com/apis/recaptcha/docs/customization.html for details on language options.

http://code.google.com/apis/recaptcha/docs/customization.html
http://code.google.com/apis/recaptcha/docs/customization.html
http://code.google.com/apis/recaptcha/docs/customization.html

