
Escenic Content Engine

Template Developer Guide
5.7.88.187628

Table of Contents

1 Introduction.. 5

1.1 About the Escenic Content Engine.. 5

1.1.1 Architecture..5

1.1.2 Object Model... 6

1.1.3 Content Items and Content Item Types.. 10

1.2 Java Web Technologies... 11

1.2.1 Web Applications...12

1.2.2 Application Servers..12

1.2.3 Servlets..12

1.2.4 JavaServer Pages... 13

1.2.5 JavaBeans... 13

1.2.6 JSP Expression Language.. 13

1.2.7 Tag Libraries..14

1.2.8 Servlet Filters...14

1.3 Your Toolkit.. 15

1.3.1 The Escenic Tag Libraries.. 15

1.3.2 The content-type Resource... 16

1.3.3 The layout-group Resource...16

1.4 What Next?...17

1.4.1 Web Application Structure...17

1.4.2 Development Process... 18

2 Getting Started...22

2.1 Installing an Example Publication...22

2.2 Editing and Administering Publications.. 23

2.2.1 Content Studio...24

2.2.2 Web Studio..24

2.3 Examining The Example Publication..24

2.3.1 The Published View.. 25

2.3.2 The Editorial View... 26

3 The Template System... 29

3.1 The Common Template..29

3.2 The Wireframe Template..31

3.3 Content Item Templates... 32

3.4 Section Page Templates.. 33

3.5 Summary Templates...35

4 Accessing The Escenic Beans.. 36

4.1 Bean Scope.. 36

4.2 Request Scope Attributes...36

4.3 Accessing Bean Properties.. 38

4.3.1 Indexed Properties.. 38

4.3.2 Mapped Properties.. 38

5 The Publication Resources..39

5.1 content-type.. 39

5.1.1 Defining Content Types...40

5.1.2 Defining Editor Panels...42

5.1.3 Defining Summaries.. 43

5.1.4 Content Item Relations..44

5.1.5 Dealing With Media Content... 44

5.1.6 Hidden Content Types...46

5.1.7 Controlling Content Item URLs... 46

5.1.8 More About Defining Fields...46

5.1.9 Changing Content Types That Are in Use.. 53

5.2 layout-group.. 54

5.2.1 Defining Section Page Layouts... 55

5.2.2 Rendering Section Page Layouts..57

5.2.3 Area and Group Options... 57

5.3 image-version... 59

5.4 feature...60

5.5 User Interface Hints..61

5.5.1 label... 61

5.5.2 description... 61

5.5.3 value-if-unset... 62

5.5.4 group..62

5.5.5 style... 62

5.5.6 style-class.. 63

5.5.7 icon.. 63

5.5.8 inline.. 63

6 Relations.. 65

6.1 Defining Relations...65

6.2 Creating Relations.. 65

6.3 Rendering Relations... 66

6.4 Gallery Relations.. 67

7 Tagging.. 68

7.1 Controlling Tag Usage..68

7.1.1 Controlling Tagging... 69

7.1.2 Controlling Tag Creation and Deletion..69

7.2 Rendering tags... 69

7.2.1 Accessing Content Item Tags... 70

7.3 Accessing Parent Tags.. 70

7.4 Accessing Child Tags...70

7.5 Tags and Search..70

8 The Tag Libraries.. 71

8.1 Common Attributes...71

9 What Next?.. 73

9.1 Escenic Resources...73

9.2 Other Resources...73

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 5

1 Introduction

The Escenic Content Engine is a platform for building large, sophisticated web sites. It provides
editorial staff with a streamlined production environment in which they can concentrate on the
production, editing and publishing of content within a predefined web site structure.

The definition and maintenance of the web site structure (and all the layout issues associated with it) is
regarded as a completely separate concern, and is the subject of this manual.

The structure and layout of an Escenic web site is defined by a set of Escenic templates. The whole
web site is generated "on demand" by merging a small number of templates with content retrieved
from a database. An Escenic template is a JavaServer Pages (JSP) document, a file containing
a mixture of HTML and JSP tags. The HTML tags define fixed layout elements, while the JSP tags
represent dynamic elements that change according to the specific content requested.

In order to be a successful Escenic template developer, you need a general understanding of:

• The Content Engine's architecture and object model

• The web technologies on which the Content Engine relies

1.1 About the Escenic Content Engine

1.1.1 Architecture

The following diagram shows a very simplified view of the Escenic Content Engine:

Request Response

Standard com ponents

Opt ional com ponents

Your responsibility

Database File system

Standard JSP tags Escenic beans

Escenic Content Engine

Custom JSP tags

Escenic tem plates (JSPs)

Servlet filters

Escenic JSP tags

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 6

The Content Engine stores all textual website content in a relational database, in the form of
documents called content items. It also stores a lot of metadata about these content items in the
database: author names, editing and publishing history, subject matter keywords, current workflow
status and so on. Finally, it also uses the database to hold information about the structure of the web
site as a whole and where individual content items belong in that structure. Images and multimedia
objects are stored as files in the file system, but the information required to locate the files and all
metadata about them is stored in the database along with the content items.

The Content Engine manages all storage and retrieval of this website content, so that you as a template
developer don't need to know anything about where or how the data is stored. All of the web site's
content and structure is presented to you in the form of an object model, which you can access using
JSP tags.

In the diagram above, the orange layer, Escenic templates, is the one you are responsible for. The
pink elements are standard components of the delivered system, while the yellow elements are custom
items that may or may not be present in your system.

An incoming HTTP request from a website user is passed through a series of servlet filters called a
filter chain. These filters are Java classes that prepare the request for processing by:

• Analyzing the address in the request (the URI)

• Creating the Escenic objects or beans your templates will need to be able to handle the request

• Adding references to these beans to a bean that represents the request

The templates are files containing a mixture of HTML tags, JSP expressions and JSP tags. The JSP
expressions and tags let you access information stored in the Escenic beans that have been created
by the filter chain. In this way, templates are able to generate a response by combining fixed HTML
layout elements with dynamic information retrieved from the database via the beans. The response is
returned via the same filter chain which can, if necessary, modify it in some way - reformat it to fit a
small-screen device, for example.

This section has introduced a lot of new terms and concepts. For more information about the Escenic
object model, see section 1.1.2. For more information about templates, servlets, filters, JSP tags, beans
and so on, see section 1.2.

1.1.2 Object Model

You will be able to work more effectively with the Content Engine if you understand the object model
on which it is based.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 7

1.1.2.1 Basic Object Model

The following illustration provides a simplified view of the object model provided by the Escenic Java
Application Programming Interface (API):

(installat ion)

Publicat ion

Sect ion

Art icle

Pool

Relat ion

hom e
sect ion (sect ion page)

(content item)

What the model tells you is this:

• An Escenic installation can be used to manage one or more web sites called publications.
A magazine publisher, for example, might use a single Escenic installation to maintain one
publication for each of it's print magazines:

Escenic installat ion

Publicat ion A Publicat ion B Publicat ion C

• Each publication may contain one root section. This root section may contain any number of
subsections, each of which may contain further subsections. This allows you to create a tree or
hierarchy of sections, which may be as large and deep as you want it to be. It determines the
structure of a publication and usually provides the basis for the primary menus used to navigate the
web site. Here, for example, is a very simple section hieararchy:

News Business Sport

Publicat ion

Dom est ic Internat ional

• A section may contain any number of content items (represented by Article objects). Content
items are the basic text, graphical and multimedia components from which a publication is

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 8

constructed: news articles, opinion pieces, images, video clips, sound files, attachments such as
PDF files and so on:

Content item 1

Sport

Content item 2 Content item 3

• A content item may appear in many sections, although it only belongs to one of them, called
its home section. A news story about soccer transfer fees may belong in the sports section of a
newspaper, but also appear in the business section, for example:

Content item 1

Sport

Content item 2 Content item 3

Business

• A section may own any number of section pages (represented by Pool objects). A section page is
a "front page" or index for a section - it is what the reader of a publication sees when they click on
a section link. It contains a number of links to content items in the section. Although a section may
have several section pages, only one of them can be active (that is published in the publication):

Sect ion page 1

Sect ion

Sect ion page 2 Sect ion page 3(act ive)

Section pages have an internal structure involving further objects, which we will look at more
closely in section 1.1.2.2.

• A content item can have relations to other content items. A content item containing a news article,
for example, might have relations to images that appear in the articles, other articles on the same
subject (that appear in the published article as links), and background video clips.

The package name of the Escenic API classes is neo.xredsys.api, so the fully qualified
class names are neo.xredsys.api.Publication, neo.xredsys.api.Section,
neo.xredsys.api.Article, etc.

1.1.2.2 Presentation Object Model

As a template developer you need to know the overall structure of the Java object model described
above. However, you will primarily work with a simpler object model called the presentation object
model. The presentation object model is provided by a layer of software in the Content Engine called
the presentation layer:

Presentat ion Layer

Escenic Content Engine

Java API

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 9

The purpose of the presentation layer is to provide template developers with a set of objects that are
both simpler to use and more efficient than the underlying API objects. The presentation layer only
contains presentation objects for the most important and frequently-used API objects however, so you
will need to deal with both presentation objects and API objects. This is why the presentation layer is
shown as an incomplete layer in the above diagram.

The main objects in the presentation object model are:

Presentat ionElem ent

Presentat ionArt icle

Presentat ionElem ent

Presentat ionPool
(sect ion page)

(group/area/teaser)

(content item)

(related content item s)

The PresentationArticle object has a direct one-to-one relationship with the API Article
object, and represents a content item. The PresentationElement object represents other content
items. A PresentationArticle contains one PresentationElement (referred to as summary)
for each related content item. PresentationElements are grouped by relation type (see chapter
6).

Presentat ionArt icle

Presentat ionElem ent
"stories" (relat ion-type)

Presentat ionElem ent (sum m ary)

Presentat ionElem ent
" im ages" (relat ion-type)

Presentat ionElem ent (sum m ary)

Presentat ionElem ent (sum m ary)

The PresentationPool object has a one-to-one relationship with the API pool object, and
represents a section page. It contains one PresentationElement object which represents the grid
used to organize the layout of links on the section page. A PresentationElement object can contain
other PresentationElement objects to form a tree of groups and areas that can represent the

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 10

logical structure of a complicated multi-column layout. PresentationElement objects can also represent
the content item "teasers" (called summaries) displayed on section pages.

Presenta tionPool

Sum m ary

Sum m ary

Sum m ary

Teaser

Teaser

Sum m ary

Teaser

"header"

" left " "m ain"
"m ain-top"

"m ain-left " "m ain-right "

Presenta tionElement
(grid/root group)

Presenta tionElement
"header" (a rea)

Presenta tionElement (summary)

Presenta tionElement
"le ft" (a rea)

Presenta tionElement (summary)

Presenta tionElement (summary)

Presenta tionElement
"main" (group)

Presenta tionElement
"main-top" (a rea)

Presenta tionElement (summary)

Presenta tionElement (summary)

Presenta tionElement
"main-le ft" (a rea)

Presenta tionElement (summary)

Presenta tionElement (summary)

Presenta tionElement
"main-right" (a rea)

Presenta tionElement (summary)

Presenta tionElement (summary)

root group
sect ion page

Sum m ary

Sum m ary

Sum m ary

Teaser

Teaser

Sum m ary

Sum m ary

The package name of the presentation classes is neo.xredsys.presentation, so the
fully qualified class names are neo.xredsys.presentation.PresentationPool,
neo.xredsys.presentation.PresentationArticle, etc.

When you are designing your templates you will need to access both information held in presentation
objects and information held in API objects. In both cases the objects are made available to you as
JavaBeans. For more information about this and other Java-based web technologies, see section 1.2.

1.1.3 Content Items and Content Item Types

Content items are the central objects in the Escenic object model. All the other objects are containers
for organizing content items. Content items are generic containers for all the kinds of content you
might want on your web site: news stories; magazine articles; theater, film, book and restaurant
reviews; obituaries; interviews; stock market reports; photos; video clips; audio files; attached
documents such as PDF files - the list is very long.

In addition to holding all these different kinds of content, content items also contain additional
information about the content: metadata such as the name of the author and the article's publication
history. Content items can also contain relations to other content items. A news story, for example,
might contain relations to:

• Images to be displayed with the story

• Related news stories to be displayed as links in a "More about..." box

• A background video report to be displayed alongside the story.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 11

Moreover, content items have an internal structure (title, lead text, body, for example) that usually
varies according to content type, and different organizations can have very different requirements
with regard to content item structure. For this reason, articles are customer-definable objects. All the
content types required in a particular Escenic installation are specified in an content type definition
file called the content-type resource.

The content-type resource defines and names all the content types available to the Content Engine,
and for each content type it specifies:

• A set of fields. All the information in an article is stored in fields. An article will usually have at
least a body field for the main content and a title field (although different names may be used)
plus a range of other fields that vary according to the content type.

• Optionally, a set of relation types. A relation type is simply a name used to classify an article's
relations to other objects (other articles, images, multimedia objects, external links and so on). For
further information about relation types, see chapter 6.

Since it defines the structure of all the articles in an Escenic installation, the content-type resource
is obviously of central importance. It determines:

• What is stored in the database

• What is displayed in the Content Studio user interface

• The structure of the PresentationArticle and PresentationRelationArticle beans
available to you when writing your templates

In order to be able to write Escenic templates you have to know what content types, fields and relation
types are defined in the content-type resource. For further information about this, see section 5.1.

Alongside the content-type resource files is another important resource file called the layout-group
resource. This resource defines the components of section pages (groups, areas and summaries,
see section 1.1.2.2) and their logical relationships. For further information about the layout-group
resource, see section 1.3.3.

1.2 Java Web Technologies
The Escenic Content Engine makes use of a number of web technologies that you need to know about:

• Web applications

• Application servers

• Servlets

• JavaServer Pages

• Java Beans

• JSP expression language

• Tag libraries

• Servlet filters

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 12

1.2.1 Web Applications

In general terms, a web application is an application that runs on a centralized application server
and is delivered to its users over the Internet using web technology: that is, the HyperText Transfer
Protocol (HTTP), the HyperText Markup Language (HTML), and web browsers. The term
web application is generally used to describe web sites (or parts of web sites) that serve dynamic
content rather than those which are simple repositories of static documents. Nevertheless, like a
simple web server, the basic function of a web application is to accept HTTP requests from a client
(usually a browser) and return responses to those requests, usually in the form of an HTML document.

Over the years, a number of additional web application technologies have been developed to
supplement the basic WWW components, with the aim of improving the application user experience
and simplifying the application development process. The web application technologies used by
the Escenic Content Engine are all based on the Java Enterprise Edition (JEE) standard. This
standard specifies a set of Java-based components and standard interfaces between them. It has the
advantages of being very widely used and supported, and of platform-independence.

In the Java world, the term web application has a very specific meaning - it is used to denote a web
application that conforms to the JEE standard. In order to simplify deployment, JEE web applications
have a standardized structure:

• A single root folder

• A WEB-INF folder directly under the root, containing an XML file called web.xml that describes
the content and structure of the application.

• Deployed as a ZIP file with the filename extension .WAR (for Web ARchive)

The Escenic Content Engine can be regarded as a framework for building a particular kind of JEE web
application.

1.2.2 Application Servers

An application server is a container for web applications. Some application servers are add-ons to
web servers, and just provide the additional functionality (such as database access) needed to support
dynamic web applications, while others include their own web server. An application server's main
function is to provide all the "plumbing" needed to connect the business logic encapsulated in a web
application with an organization's back-end infrastructure.

In addition to this central function, application servers may also offer a variety of additional features
such as built-in redundancy, high-performance distributed application services and support for
complex database access.

Escenic web applications can run on any application server that is J2EE-compliant.

1.2.3 Servlets

A servlet is a Java class that implements the Java Servlet API and can therefore run as a web
application in a JEE-compliant application server. Like any other web application it receives and
processes HTTP requests, and returns responses to those requests, typically in the form of HTML or
XML documents.

For more information about servlets, see http://java.sun.com/products/servlet/docs.html.

http://java.sun.com/products/servlet/docs.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 13

1.2.4 JavaServer Pages

JavaServer Pages (JSP) is an extension to Java servlet technology that allows web developers to
build web applications without actually writing Java code. It defines a set of JSP actions or tags that
can be combined with ordinary HTML or XML tags to produce dynamic web pages. A JSP tag looks
rather like an HTML or XML tag (it is enclosed in angle brackets) but is actually a placeholder for
some Java code that will ultimately return dynamic data.

JSP also defines an expression language that can be used to access values stored in JavaBeans
(see section 1.2.5).

JSP files are called JavaServer Pages or JSPs, and are identified by the extension .jsp. The first time an
application server receives a request for a JSP it:

1. Passes the file to a translator that translates the file to a servlet.

2. Compiles the servlet.

3. Executes the servlet, passing in the initial request as a parameter.

4. Returns the servlet output to the requesting client.

5. Caches the compiled servlet for future use.

The next time a request for the same JSP is received, the application skips the translation and
compilation steps, and passes the request directly to the cached servlet.

JSPs are therefore, for all practical purposes, just an easier way to write servlets. JSPs and servlets are
interoperable. A JSP can include output from a servlet or forward its own output to a servlet, and a
servlet can include output from a JSP or forward its output to a JSP.

Escenic templates are JavaServer Pages. As a template developer, you will spend most of your time
writing JSPs.

For more information about JavaServer Pages, see http://docs.oracle.com/javaee/5/tutorial/doc/
bnagx.html.

1.2.5 JavaBeans

JavaBeans are Java language classes that have been written to comply with the JavaBeans
specification. This specification defines various rules concerning how instances of a class are to
be created, how properties are to be accessed and so on. Objects that conform to the JavaBeans
specification are commonly referred to as beans, and can be easily accessed and manipulated using a
variety of standard J2EE-based tools.

The application objects manipulated by a servlet are always implemented as beans. In the Escenic
Content Engine, for example, publications, sections and content items are represented by beans.

JavaBeans are not to be confused with Enterprise JavaBeans. For more information about JavaBeans,
see https://docs.oracle.com/javase/tutorial/javabeans/quick/index.html.

1.2.6 JSP Expression Language

The JSP expression language gives a JSP programmer direct access to the content of any beans
available from the current context. The Escenic Content Engine, for example, makes the requested
content item and section returned in response to a user request available to you as variables called

http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html
https://docs.oracle.com/javase/tutorial/javabeans/quick/index.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 14

article and section. Using the JSP expression language, you can therefore include a content item's
title field in a page by entering the expression:

${article.fields.title}

For more information about the JSP expression language, see http://www.oracle.com/technology/
sample_code/tutorials/jsp20/simpleel.html.

1.2.7 Tag Libraries

A JSP file is usually a combination of standard HTML, JSP expressions and JSP actions or tags. A
JSP tag looks like an HTML/XML tag, but it is in fact a placeholder encapsulating some Java code that
gets executed when the JSP is processed by the application server.

An Escenic application includes two main types of JSP tags:

JavaServer Pages Standard Tag Library (JSTL) tags
As its name suggests, JSTL is a library of standard tags that provide a lot of generic functionality
that is useful in many applications. The JSTL library provides tags for flow control (looping, if
and so on), string handling, number/date formatting, and querying SQL and XML data sources.
For information about tag libraries in general and the JavaServer Pages Standard Tag Library
(JSTL), see http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html.

Escenic tags
The Escenic Content Engine includes some tag libraries containing specialized tags for
performing functions that cannot easily be carried out using the expression language or JSTL
tags. For further information, see section 1.3.1.

An Escenic application may contain other types of tags: there is nothing to prevent you using other
third-party tag libraries if you find them useful, or writing your own if you have special requirements
and are a Java programmer. However, most users' requirements can be met using a combination of the
JSP expression language, JSTL tags and Escenic tags.

1.2.8 Servlet Filters

Servlet filters are optional components of J2EE-based webapps. They are Java classes that can be
wrapped around a servlet in order to modify:

• Inbound requests

• Outbound responses

Servlet filters are easy to write and provide a simple mechanism by which common functionality can
be encapsulated for re-use in different contexts. They have standardized input/output interfaces
which allows them to be assembled into chains. An inbound request can be passed through a chain of
filters to prepare it for processing by a servlet. The response generated by the servlet is then passed
back through the same filter chain. This means that each filter in the chain can be used to modify the
inbound request or the outbound response or both.

The Escenic Content Engine has a standard filter chain that is used to prepare inbound requests for
processing. The primary functions of this chain are to:

• Parse the request URI to determine what Escenic object is being requested.

• Verify that the requested object is available.

http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html
http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 15

• Get the presentation information needed to display the requested object.

• Prepare any images needed to respond to the request.

For further information about servlet filters in general, see http://java.sun.com/products/servlet/
Filters.html. For detailed information about the Escenic Content Engine's servlet filters, see
EscenicStandardFilterChain.

1.3 Your Toolkit
When the application server you are using receives an HTTP request for a page in an Escenic
publication, it is passed to the Escenic request filter chain described in section 1.2.8. The last filter
in the chain passes it to the Escenic master template file (usually called common.jsp). The filters in
the filter chain have verified that it is a legitimate request, created the beans you will need to respond
to the request and placed them in the request scope so that you can access them using the JSP
expression language and tags.

Your job, then, is to create a common.jsp file that will generate appropriate responses to the requests.
(Usually you will want to break the task up into a number of smaller, more specialized JSP files:
common.jsp then just operates as a "clearing house" that examines the requests and forwards it to
another JSP file.)

You have the following tools at your disposal in responding to requests:

• HTML to create the static layout

• The beans that have been created for you and the information they contain

• The JSP expression language for accessing the information in the beans

• JSTL tags for

• creating logical constructs such as if statements and loops

• passing control between templates

• formatting retrieved values such as numbers and dates

• Escenic tags for accessing information that cannot be extracted from a request's beans using the
expression language alone

• The content-type resource file, which tells you what types of content items to expect, and the
fields and relations the different content types contain.

• The layout-group resource file, which tells you what section, grid and element templates you
need to create, and also defines the logical structure of a publication's section front pages.

1.3.1 The Escenic Tag Libraries

You are recommended to use standard JSTL tags together with the JSP expression language as far as
possible in your Escenic template files. The Escenic tag libraries contain specialized tags for accessing
and manipulating Escenic beans and templates in ways that are difficult to achieve using standard JSP
functionality.

The most important Escenic tag libraries or taglibs are:

http://java.sun.com/products/servlet/Filters.html
http://java.sun.com/products/servlet/Filters.html
http://docs.escenic.com/ece-advanced-temp-dev-guide/5.7/escenicstandardfilterchain.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 16

publication Tag Library
Contains tags for accessing Publication beans.

article Tag Library
Contains tags for accessing PresentationArticle beans.

section Tag Library
Tag LibraryContains tags for accessing Section beans.

template Tag Library
Contains tags for transferring control between templates.

util Tag Library
Contains a variety of useful tags.

collection Tag Library
Contains tags for creating and manipulating standard Java collection beans.

view Tag Library
Contains tags for accessing View beans. These are objects that can contain selections of objects
from tree structures such as section hierarchies.

The Escenic tag libraries were a more important component of the Escenic development
environment in earlier versions of the Content Engine. For this reason the taglibs contain a large
number of deprecated tags. These tags remain available, so that old applications which make
use of them will still work. You should not, however, use them in new applications - the same
functionality can be achieved using JSTL tags and/or JSP expressions. They are clearly marked as
deprecated in the Escenic Content Engine Bean Reference.

1.3.2 The content-type Resource

The content-type resource is mainly important as a source of information for the template writer,
since it defines the structure of the content items you will be dealing with. This expression:

<h2>${article.fields.title}<h2>

will only return a value if the current article bean actually has a "title" field, and the place to find
out what fields your article beans contain is the content-type resource.

For more information about the content-type resource, see section 5.1.

The extent to which you regard the content-type resource purely as a source of information
depends upon your responsibilities. If you are a "pure" template developer, then this will be
the case. In many organizations, however, the "template developer" role is combined with the
"information architect" role. If you have "information architect" responsibilities, then you will
also be responsible for creating this file, which plays a central role in determining the underlying
structure of an Escenic publication.

1.3.3 The layout-group Resource

The layout-group resource is also mainly a source of information for the template writer. It defines
the logical structure of the section pages. That is, it specifies the groups and areas a section page
is composed of, the relationships between them, and the content-types of the summaries that may
appear in each area. It does not specify the actual layout of these items, but the layout you create with
your templates must match this logical structure.

http://docs.escenic.com/ece-taglib-ref/5.7/publication.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_api_publication.html
http://docs.escenic.com/ece-taglib-ref/5.7/article.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationarticle.html
http://docs.escenic.com/ece-taglib-ref/5.7/section.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_api_section.html
http://docs.escenic.com/ece-taglib-ref/5.7/template.html
http://docs.escenic.com/ece-taglib-ref/5.7/util.html
http://docs.escenic.com/ece-taglib-ref/5.7/collection.html
http://docs.escenic.com/ece-taglib-ref/5.7/view.html
http://docs.escenic.com/ece-bean-ref/5.7/class_com_escenic_common_util_tree_view.html
http://docs.escenic.com/ece-bean-ref/5.7/index.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 17

As with content-type, The extent to which you regard the layout-group resource purely as a
source of information depends upon your responsibilities. If you are a "pure" template developer,
then this will be the case. In many organizations, however, the "template developer" role is
combined with the "information architect" role. If you have "information architect" responsibilities,
then you will also be responsible for creating this file. This file is, however, far less important than
the content-type resource.

1.4 What Next?
Hopefully, after reading this introduction you now have a general understanding of:

• The general architecture of the Escenic Content Engine

• The object model used to represent the structure and content of Escenic web sites

• The technologies on which the Escenic Content Engine is based

• How you can use Escenic templates to generate HTML pages containing articles retrieved from the
Content Engine

There are, however, still a few things you need to know before you are ready to start making your first
templates:

• Web application structure

• The template development process

In addition, if you are completely new to JSP programming, then it would probably be a good idea to
find out a bit more about:

• JavaServer Pages (JSP) - see http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html.

• JavaBeans - see https://docs.oracle.com/javase/tutorial/javabeans/quick/index.html.

• JSTL - see http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html.

• JSP expression language - see http://www.oracle.com/technology/sample_code/tutorials/jsp20/
simpleel.html.

1.4.1 Web Application Structure

All J2EE web applications are stored in WAR (Web ARchive) files. A WAR file is in fact a ZIP
file with a special internal directory structure and the extension .WAR. Escenic publications are
web applications and are therefore also always stored in WAR files. In order to work on an Escenic
publication you:

• Unzip the WAR file

• Edit one or more of the files in the unzipped folder tree

• Zip up the folder tree again into a web archive

The folder tree you get when you unzip a WAR file is often referred to as an exploded WAR file. An
exploded Escenic publication has the following minimum structure:

publication-name
 META-INF

http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html
https://docs.oracle.com/javase/tutorial/javabeans/quick/index.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html
http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html
http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 18

 escenic
 publication-resources
 escenic
 content-type
 feature
 image-version
 layout-group
 MANIFEST.MF
 WEB-INF
 template
 jsp-files
 web.xml
 index.jsp

You should not usually need to create this structure from scratch (to create a new publication you can
just copy and modify an existing one), all you need to know is where to look for the files you want to
edit, and where to add new files you want to include. The files you will usually need to modify in this
structure are:

• The template JSP files in publication-name/WEB-INF/template.

• The files content-type, feature, image-version and layout-group in publication-name/
META-INF/escenic/publication-resources/escenic. These files are usually referred to as
publication resources.

You may also need to add new JSP files to publication-name/WEB-INF/template. How you organize
the files in publication-name/WEB-INF/template is entirely up to you: you can store them all in the
same folder or create subfolders if you wish. The only requirement is that common.jsp (the "startup"
file initially called by the Content Engine when responding to a request) is stored in publication-
name/WEB-INF/template, not in a subfolder. (If you need to, you can in fact set up the Content
Engine to use a different startup file name and location. For details, see The default.properties File.

The folder structure shown above is a minimum structure: other files and folders may be present in
a publication WAR file. The Escenic assembly tool, a tool delivered with the Content Engine to
simplify the process of assembling and deploying publications will usually add some files and folders to
this minimum structure. You can ignore all of these additions.

1.4.2 Development Process

Developing Escenic templates involves editing various JSP and XML files in different locations,
creating WAR archive files, uploading them to your application server, using various Escenic
applications to modify settings, restarting the web application periodically and viewing the pages
generated by your templates.

You will find it a lot easier to learn the details of template development if you have a clear
understanding of this cycle from the very beginning.

There are two main components you have to deal with when developing your templates:

The application server
The application server is responsible for displaying your publication. You will not see the results
of any changes made to the appearance of your publication unless you update the application

http://docs.escenic.com/ece-advanced-temp-dev-guide/5.7/the_default_properties_file.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 19

server's copy of your publication. This process of copying an updated version of your publication
to the server is called deployment.

The Content Engine
The Content Engine is responsible for managing the structure of your publication, and the
editing environments presented to editorial staff in Content Studio. Any changes made to the
structure of your publication (such as adding a new field to an article, modifying a field creating
a new content type or template) will not take effect or become visible in Content Studio until you
upload your changes to the Content Engine and update the publication.

The following sections describe the procedures to follow in various cases.

1.4.2.1 Deployment

The exact deployment procedure varies slightly according to whether or not your application server
supports EAR deployment. Most application servers do, but Tomcat does not.

Make WAR file
Upload WAR file
to assem bly tool ant -q ear

Copy EAR file to
server first t im e?

y

n

Make propert ies file
Upload prop. file
to assem bly tool

server
supports

EAR?

n

y

Copy WAR files to
server

The procedure involves the following steps:

1. Zip up the modified folder tree using any zip-capable archiving utility. If necessary, rename the
resulting archive from .zip to .war (some utilities will do this for you). The archive should not
contain the application's root folder. That is, if you have an application tree in which the root
folder is called myapp, you should create an archive called myapp.zip with the same contents
as the myapp folder.

2. Copy the WAR archive to the escenic/assembly-tool-version/publications folder on
your application server. If you are working on a different host from the server then you will need
to use a remote copying tool to do this.

3. If you are deploying the publication for the first time then you also need to create a publication
properties file describing the publication and copy it to the same location as the WAR archive.
A publication properties file is a simple text file with the same name as the publication WAR
archive, the extension .properties and the following contents:

name: publication-name
source-war: archive-name.war
context-root: /publication-name

where publication-name is the name to be used for the publication and archive-name is the
name of the publication archive. publication-name and archive-name can be the same but should
probably not be (you may want to create several publications based on the same publication
definition).

4. Log in on the application server host, CD to the escenic/assembly-tool-version folder and
enter:

ant -q ear

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 20

5. • If your application server supports EAR file deployment, copy escenic/assembly-
tool-version/dist/engine.ear to your application server using the particular server's
recommended deployment procedure.

• If your application server does not support EAR file deployment, copy escenic/assembly-
tool-version/dist/war/myapp.war to your application server using the particular
server's recommended deployment procedure. If this is the first time you are deploying
an Escenic publication, then you should copy all the WAR files you find in the escenic/
assembly-tool-version/dist/war folder. If it is not the first time then you only need to
copy the publication war file.

You must use the assembly tool as described above to deploy publications, even if you are only
redeploying a single WAR file: the assembly tool modifies the WAR file you supply to it, adding
libraries, patches and other important components. But don't worry - in a normal development
environment you won't need to to do it very often as you can do most of your development directly
on a deployed copy of the application - see section 1.4.2.3.

Once you have completed deployment, you should visit the publication using a browser to check that it
has actually been deployed/redeployed.

1.4.2.2 Creating/Updating Publication Resources

Make WAR file

Upload resource
to Content Engine

Verify changes finished?
y

n

Upload WAR file
to Content Engine

Go to Web Adm in
interface

Go to Web Adm in
interface

Information about the structure of a publication is supplied to the Content Engine in the form of files
called publication resources (see chapter 5). If you change any of these resources (or create a new
set of resources defining a new publication), then in order to update/create your publication, you
must:

1. Start a browser and visit the Escenic Web Administration interface. This usually has the URL
http://server-name:port/escenic-admin where port is the port number the server is
listening on.

2. Upload the resources using the New pubs option if you are creating a new publication or List
pubs > Update resources if you are updating an existing publication.

Instead of uploading the resources individually in this way, you can instead create a WAR file
containing all your changes and upload the WAR file in the same way. You can use the same WAR file
that you use for deployment for this purpose, and this is often the most convenient method of updating
publication resources.

When you have uploaded the resources, you can open the publication using Content Studio to verify
that the publication has been created or that your changes have taken effect.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 21

1.4.2.3 Making Template Changes

Once you have deployed a publication on your development application server, you can work directly
on the files in the application server's exploded version of the publication. This is the most effective
method of development, since any changes you make to the templates are immediately visible in the
application - no deployment step is necessary. You can use this method as long as all you are doing is
making changes to existing templates.

If for some reason you cannot work directly on the application server, or if you need to copy your
changes to another server (a test server, for example), then you will need to periodically redeploy your
application as described in section 1.4.2.1.

1.4.2.4 Changing Content Item Types

Edit art icle-type
resource

Upload art icle-type
resource

In order to change a content type (for example, add, remove or change the content type's fields), add a
new content type or remove one, you must:

1. Edit the content-type resource. For details of how to do this, see section 5.1.

2. Upload the changed content-type resource to the Content Engine see section 1.4.2.2).

If you have changed any templates to take advantage of the content type changes and you are not
working directly on the application server then you will also need to redeploy your application as
described in section 1.4.2.1.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 22

2 Getting Started

In order to start learning how to create and modify Escenic templates you need access to:

• A working Escenic installation

• A simple Escenic publication

The Escenic installation does not have to be on your PC (usually it won't be, it will be installed on a
server in your network).

For information on how to install the Escenic Content Engine, see the Escenic Content Engine
Installation Guide.

The machine on which Escenic is installed must also have an Apache Ant installation. You can get Ant
from http://ant.apache.org/.

On your PC you will need a Java VM installed so that you can use the Escenic editing program,
Content Studio. You can find the latest version of the Java VM for your operating system here: http://
www.java.com/en/download.

2.1 Installing an Example Publication
You are recommended to use the temp-dev publication for learning purposes. This publication is
intentionally very simple, and it is used in most of the examples in this guide. You should find the
publication WAR file (temp-dev.war) in the <engine.root>/contrib/wars/ folder of your
Escenic installation.

Get a copy of temp-dev.war and upload it to the Content Engine as described in section 1.4.2.2. As
part of this process you will be asked to specify a name for the publication, and an administrator
password, which you will need to use later. For a more detailed description of how to create new
publications, see the Escenic Content Engine Installation Guide.

You should now verify that the publication is correctly installed in the Content Engine. To do this:

1. Point your browser to http://server-name:port/studio.

2. Click on the Launch Escenic Content Studio button displayed on this page. Escenic Content
Studio is then downloaded to your PC (this can take a while the first time you do it). When
downloading is complete, a login dialog is displayed.

3. Log in to the new publication. You must use a username formed by adding "_admin" after the
name of the publication. If, for example, you called the publication temp-dev, then the admin
user name is temp-dev_admin. The password is the one you specified when creating the
publication.

http://docs.escenic.com/ece-install-guide/5.7/
http://docs.escenic.com/ece-install-guide/5.7/
http://ant.apache.org/
http://www.java.com/en/download
http://www.java.com/en/download
http://docs.escenic.com/ece-install-guide/5.7/

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 23

You should then see something like this:

Once that is done, deploy the publication on your application server as described in section
1.4.2.1. To verify that the deployment was successful, point your browser at http://server-
name:port/publication-name, where publication-name is the name of your publication. If you used
the WAR archive deployment method, then this will be the same as the name of the WAR archive
(temp-dev). If you used the EAR archive deployment method, then it will be the name you specified
in temp-dev.properties. You should then see something like this:

2.2 Editing and Administering Publications
Editorial staff use Escenic Content Studio to edit the content of Escenic publications, and Web Studio
to manage the publications. As a template developer, you do not need to know these applications very
well, but you do need some knowledge of them. You need to be able to add content to and modify the

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 24

test publications you use while developing templates, and you also need to understand how changes
you make to the structure of a publication affect the editing environment presented by Content Studio.

2.2.1 Content Studio

Content Studio is a Java WebStart application, which means that you do not have to install it on your
PC. As long a Java VM is installed on your PC, you can start Content Studio by pointing your browser
at http://server-name:port/studio and clicking on the Launch Escenic Content Studio link
in the displayed page as described in section 2.1.

For detailed instructions on how to use Content Studio for editing and managing publication content
see the Escenic Content Studio User Guide.

2.2.2 Web Studio

Web Studio is a browser-based publication administration tool. It allows the publication administrator
to modify a publication's structure (add and remove sections, for example), set access rights and carry
out a variety of other administrative tasks.

To use Web Studio:

1. Point your browser at http://server-name:port/escenic.

2. Enter the administrator user name (temp-dev_admin, for example) and password of the
publication you want to work on.

3. Click on the Log in button.

You should then see something like this:

For detailed instructions on how to use Web Studio for managing publications, see the Escenic Content
Engine Publication Administrator Guide.

2.3 Examining The Example Publication
In order to understand Escenic you need to understand the relationship between:

• The published view of the publication

http://docs.escenic.com/ece-content-studio-guide/5.7/
http://docs.escenic.com/ece-pub-admin-guide/5.7/index.html
http://docs.escenic.com/ece-pub-admin-guide/5.7/index.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 25

• The editorial view of the publication seen in Content Studio

• The templates and publication resources (i.e publication definition files) that govern these two
views

2.3.1 The Published View

The home page of the temp-dev example publication you have installed (http://server-
name:port/temp-dev) looks like this:

Although it is extremely simple, this page has a typical Escenic page layout:

Header

Sect ion page

Footer

The site map on the left shows the structure of the publication, which consists of two sections:

Home
 Examples

Home is the root section, and Examples is a subsection of Home (as suggested by the
indentation). The header contains the name of publication. The section page area contains
summaries of a selection the content items in the section. The contents of this area at any particular
time are determined by the section's editor, who choose what content items are to be published there
using Escenic Content Studio. The footer contains static general information about the publication.

The section page area is often also referred to as the grid because it usually has a table/column
structure. In this case you can see that the grid is composed of three areas: one at the top left above

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 26

the line, one below the line and one on the right in a box. The summaries are formatted slightly
differently in each of these areas.

Now click on one of the summary links:

The section page grid is now replaced by the selected article (content item), but the header, footer and
sitemap (often collectively called the publication's wireframe) remain unchanged.

2.3.2 The Editorial View

Start Content Studio again and log in to the temp-dev publication. Click on the Section tab (down
the left side of the window), then find Home in the section list (at the top left) and double click on it to
open the Home section in an editor tab:

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 27

The section contains three content areas called Header, Right Column and Center Column. These
areas directly correspond to the three layout blocks in the Home section page of the publication. To
verify this, try using Content Studio to move a content item:

1. Select Example 3 and drag it from the Center Column element group to Right Column.

2. Click on the Publish button in the bottom right corner of the editor tab to save and publish your
changes.

3. Look at the Home page in your browser (refresh/redraw the view if necessary).

Example 3 has now moved to the boxed Right Column element group in the published view:

Now go back to Content Studio and double-click on Example 2 to open the content item itself in an
editor tab:

The content item consists of three fields:

• Title, which contains the title of the item

• Summary, which contains a brief summary of/extract from the content

• Body, which contains the body of the item

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 28

Try changing the content of the Title field, save your changes and look at the results in the browser.
The title should now be changed both on the Examples front page and in the article itself.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 29

3 The Template System

An Escenic template set is a set of JSP files that:

• Have access to a number of beans representing Escenic objects such as articles and sections

• Have access to a number of Escenic tag libraries providing functionality that cannot easily be
achieved using the available beans, JSP expressions and standard JSTL tags

You can organize these JSP files anyway you like. The only requirement is that there is a single
"master template" - one JSP file that is called by the Content Engine in response to every user request.
Normally this file must be called common.jsp, and located in the publication/WEB-INF/template
folder. It is possible to change this default name and location (see The default.properties File), but
should not normally be necessary.

In theory you could implement the whole template system in common.jsp, but normal practice is to
break the system down into a number of smaller, simpler files. The temp-dev application templates
described in this section are broken down in this way. The structure of this template set is, however,
just an example: precisely how you organize your templates is up to you.

CSS usage

You will notice that the template examples listed in the following sections contain no CSS or other
HTML formatting information. Many elements, on the other hand, are enclosed in HTML div
elements with class or id attributes. The common.jsp template contains a reference to a CSS file
which contains all formatting instructions required to render the pages. The class/id attributes in
the final HTML output are used by the browser to look up the appropriate styles in the referenced CSS
file.

In this way, the templates deal only with content and structure, and all layout issues are dealt with in
the CSS file. It is possible to completely change the appearance of a site by simply changing the CSS file
that is used.

3.1 The Common Template
All HTTP requests handled by an Escenic publication are either requests for content items or requests
for section pages. Each incoming request is processed by Escenic servlet filters (see section 1.2.8),
which add the appropriate beans to the request scope and finally pass it to the "master" template
(usually called common.jsp).

common.jsp usually has very little content. Here is temp-dev's common.jsp:

<%@ page language="java" pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"
 %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="no" lang="no">
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=iso-8859-1" />
 <c:url var="css" value="/css/main.css" scope="request"/>
 <link rel="stylesheet" type="text/css" href="${css}">

http://docs.escenic.com/ece-advanced-temp-dev-guide/5.7/the_default_properties_file.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 30

 <title>
 ${publication.name}
 <c:if test="${requestScope['com.escenic.context']=='art'}">
 - ${article.fields.title}
 </c:if>
 </title>
 </head>
 <body>
 <jsp:include page="wireframe/default.jsp"/>
 </body>
</html>

The first line identifies the file as a JSP file, and the second line is a taglib declaration identifying the
JSTL core tag library that is to be used in the file.

The remainder of the file contains a template for generating the outer shell of an XHTML document:
the html, head and body elements.

The first things to take note of here are:

• The JSTL url tag is used to create a variable (contextUrl) containing a context URL (the
current folder, "/") that can be used as a base for constructing further URLs. Since it is created with
request scope, it can be used in any of the other JSP files called while processing this request.

• The variable is immediately used to create a link to the CSS file that will determine the
appearance of all generated output. The JSP expression language is used to reference the variable:
${contextUrl}.

Three other variables are referenced to create the content of the HTML title element:

requestScope
Is a JSP implicit object, a standard variable available in all JSP requests. It is used to hold
request scope attributes: named values that are available for the duration of a request.
In this case we are testing the value of the request scope attribute com.escenic.context,
which is always present in Escenic requests. It is added to the request by the servlet filters,
and it contains either "art" if the current request is a content item (article) request or "sec" if
the current request is a section request. (For a fuller explanation of the term request scope
attribute, see section 4.1).

publication
is an Escenic request bean. The Escenic request beans are, like com.escenic.context,
request scope attributes that are added to the requestScope by the servlet filters. The
publication request bean is a Publication bean that is available in all requests. Here, the
bean's name property is retrieved.

article
is also an Escenic request bean (PresentationArticle). However, the article bean is only
available in content item requests: if the current request is a content item request, then the
content of the article's title field is retrieved for inclusion in the HTML title element.

common.jsp then passes responsibility for generating the body of the HTML document to another
template, wireframe/default.jsp.

http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_api_publication.html
http://docs.escenic.com/ece-bean-ref/l-version/class_neo_xredsys_presentation_presentationarticle.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 31

3.2 The Wireframe Template
wireframe/default.jsp has an overall structure that matches the page layout diagram in section
2.3.1: it consists of four HTML div elements representing the main page layout areas: header,
footer, menu (or site map) and content (i.e, page content - a content item or a section page).

<%@ page language="java" pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"
 %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://struts.apache.org/tags-bean" prefix="bean" %>
<%@ taglib uri="http://www.escenic.com/taglib/escenic-section" prefix="section" %>
<%@ taglib uri="http://www.escenic.com/taglib/escenic-view" prefix="view" %>
<div id="body">
 <div id="header">
 <h1>${section.name}</h1>
 </div>
 <div id="menu">
 <bean:define id="rootSection" name="publication" property="rootSection"
 type="neo.xredsys.api.Section"/>
 <section:recursiveView id="secView" name="rootSection" depth="2"/>
 <c:url var="arrow" value="/gfx/arrow.gif" scope="request"/>
 <view:iterate view="<%=secView%>" id="item" type="neo.xredsys.api.Section">
 <section:use section="<%=item%>">
 <view:forEachLevel> </view:forEachLevel>
 <section:link
 styleClass="menu_item"><section:name/></section:link>

 </section:use>
 </view:iterate>
 </div>
 <div id="content">
 <c:choose>
 <c:when test="${requestScope['com.escenic.context']=='art'}">
 <jsp:include page="../article/ats.jsp"/>
 </c:when>
 <c:otherwise>
 <jsp:include page="../group/${pool.rootElement.type}.jsp" />
 </c:otherwise>
 </c:choose>
 </div>
 <div id="footer">Copyright © 2009 Escenic AS</div>
</div>

The header div consists of an h1 element containing an expression that returns the name of the
current section. section, like publication is an Escenic request bean that is added to all
requests by the Escenic servlet filters. It is a Section bean representing either the section requested by
the user or the owning section of the content item requested by the user.

The footer div simply contains a logo image. Note the use of the contextUrl variable created in
common.jsp.

The menu div makes use of tags from the Escenic section Tag Library and view Tag Library taglibs to
generate a link menu or site map.

The content div contains a JSTL choose element that tests the content of
com.escenic.context to find out whether this is a content item request ("art") or a section request
("sec"), and then passes control to the appropriate template.

http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_api_section.html
http://docs.escenic.com/ece-taglib-ref/5.7/section.html
http://docs.escenic.com/ece-taglib-ref/5.7/view.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 32

For content item requests, control is passed to article/ats.jsp (article type selector).
This template simply calls a new template that depends on the content of the article bean's
articleTypeName property:

<jsp:include page="markup/${article.articleTypeName}.jsp"/>

In the context of our very simple publication, this means that if the selected content item was defined
in Content Studio as being of type News, then article/markup/news.jsp will be called, and if
it was created as being of type Picture, then article/markup/image.jsp will be called. For a
description of these templates, see section 3.3.

For section requests, the template to which control is now passed depends upon the content of another
Escenic request bean created by the servlet filters: pool.

<jsp:include page="../group/${pool.rootElement.type}.jsp" />

pool is a PresentationPool bean that represents the active section page. Its rootElement property
is a PresentationElement bean that represents one of several possible section page layouts defined by
group elements in the layout-group resource file (see group). The name of the particular layout
required for this request is held in this PresentationElement bean's type property. The content
of this type property is therefore used to select the template to call. The temp-dev publication has
only one section page layout defined in the layout-group resource, called news. For a description of the
section page template that is therefore called (group/news.jsp), see section 3.4.

3.3 Content Item Templates
Here is the temp-dev publication's article/markup/news.jsp template:

<%@ page language="java" pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"
 %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<h2>
 ${article.fields.title}
</h2>
<div class="date">
 <fmt:formatDate value="${article.lastModifiedDateAsDate}"/>
</div>
<div class="byline">
 Written by ${article.author.name}
</div>
<div class="summary">
 ${article.fields.summary}
</div>
<div class="body">
 ${article.fields.body}
 <c:forEach items="${article.relatedElements.images.items}" var="related">
 <img src="${related.content.fields.alternates.value.SmallSquare.href}"
 alt="${related.fields.caption}"
 width="${article.fields.alternates.value.SmallSquare.width}"
 height="${article.fields.alternates.value.SmallSquare.height}"/>
 </c:forEach>
</div>

<div class="stories">

http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationpool.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationelement.html
http://docs.escenic.com/ece-resource-ref/5.7/lg_group.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 33

 <h3>Related articles</h3>

 <c:forEach items="${article.relatedElements.stories.items}" var="related">

 ${related.fields.title}

 </c:forEach>

</div>

This file contains the HTML needed to present the content item, and uses JSP expressions to retrieve
the desired fields from the article bean at the appropriate points in the document. Note in
particular:

• The article bean's author property is a PresentationPerson bean, which in turn has a name
property that holds the author's name. This property can be directly accessed using the expression
language, as shown in the "byline" div above.

• The "body" div contains the body field, followed by a JSTL forEach element that displays
all the content item's related images (images is the name of a relation-type defined
in the content-type resource). The article bean's articles property is an array of
PresentationRelationArticle elements.

• Similarly, the "stories" div contains a JSTL forEach element that is used to output an HTML link
to all the content item's related stories (stories is the name of a relation-type defined in
the content-type resource).

3.4 Section Page Templates
Here is the temp-dev publication's only section page template, group/news.jsp:

<%@ page language="java" pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"
 %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<div class="news">
 <div class="header" style="background-color:
 ${pool.rootElement.areas.header.options['news-area-background']}">
 <c:if test="${fn:length(pool.rootElement.areas.header.items) > 0}">
 <div style="${pool.rootElement.areas.header.items[0].options.border}">
 <c:set var="element" value="${pool.rootElement.areas.header.items[0]}"
 scope="request"/>
 <jsp:include page="ats.jsp"/>
 </div>
 </c:if>
 </div>
 <div class="center">
 <c:forEach items="${pool.rootElement.areas.center.items}" var="item">
 <c:set var="element" value="${item}" scope="request"/>
 <c:choose>
 <c:when test="${item.type eq 'two-col'}">
 <jsp:include page="twoCol.jsp"/>
 </c:when>
 <c:when test="${item.type eq 'three-col'}">
 <jsp:include page="threeCol.jsp"/>
 </c:when>
 <c:otherwise>

http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationperson.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationrelationarticle.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 34

 <jsp:include page="ats.jsp"/>
 </c:otherwise>
 </c:choose>
 </c:forEach>
 </div>
 <div class="right">

 <c:forEach items="${pool.rootElement.areas.rightcolumn.items}" var="item">
 ${item.fields.TITLE}
 </c:forEach>

 </div>
</div>

In order to fully understand this template you need to understand the section page structure it is
operating on. This structure is defined in the publication's layout-group resource (and reflected in
the section page editor displayed in Content Studio). For more about the layout-group resource, see
section 5.2.

The section page structure defined in the layout-group resource consists of three main areas:
header, center and rightcolumn. header is intended as a headline area to highlight the main
story, center is the main area in which a number of different summaries are displayed, while
rightcolumn is for lower priority stories, displayed as a simple list of links.

The code for the header area:

1. Checks that the area contains an item.

2. If it does, makes an HTML div to format the item and then creates a request scope variable
called element that references the item. (For more detailed information about the div element's
style attribute, see section 5.2.3.)

3. Passes control to article/ats.jsp (article type selector). This template calls a new template
that depends on the content of the element variable's article.articleTypeName property:

<jsp:include page="../element/${element.article.articleTypeName}.jsp"/>

The definition of the center area in the layout-group resource includes references to two groups
called two-col (which is defined as containing two sub areas, left and right) and three-col
(which is defined as containing three sub areas, left center and right). What this means is that
the Content Studio user can choose to insert two-column and three-column sub-areas into the center
area instead of (or as well as) content items. The code for the center area therefore has to be able to
deal with these variations.

The code for the center area therefore uses a forEach element to cycle through all the area's items,
find out whether it is a content item or a group, and take appropriate action. Note that the variable
created for each item has request scope and has the same name (element) as the variable created in
the header area code. For content items, control is passed to the same article type selector as in the
header area code.

The code for the rightcolumn area simply cycles through all the area's items and creates a link to
each content item.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 35

3.5 Summary Templates
Here is the temp-dev publication's element/news.jsp template:

<%@ page language="java" pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"
 %>
<h3>
 ${element.article.fields.title}
</h3>
<div class="summary">
 ${element.article.fields.summary}
</div>
Read more

It is called by the article/ats.jsp template and uses the request scope variable element created
in group/news.jsp. Both of these templates are described in section 3.4. It simply creates an HTML
snippet that displays the title and summary fields of the content item referenced by the element
variable.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 36

4 Accessing The Escenic Beans

The Escenic basic object model and presentation layer object model were introduced in section 1.1.2.1
and section 1.1.2.2. Learning to write Escenic templates is largely a matter of learning to understand
these models and learning how to access the objects (or beans) in them from JSP.

This chapter will describe this aspect of template writing in more detail.

4.1 Bean Scope
Beans in JSP applications always have a clearly defined scope which determines the context in which
they are available. There are four scopes, listed here in order of "size" (largest first):

application
Beans with application scope are always available within an application.

session
Beans with session scope are available for the duration of a particular user's application session.
Sessions normally expire after an application-defined period of inactivity. Use of session scope
should be avoided in Escenic applications.

request
Beans with request scope are available within all the JSP files involved in responding to a
particular HTTP request.

page
Beans with page scope are only available within a single JSP file. When a JSP file contains a call
to another JSP file, any page scope beans created in the calling file are not available in the called
file.

The current application, session, request and page are represented internally in JSP by Java objects
called implicit objects because they are always available. Any application-created beans are stored as
special properties of these objects called attributes. The scope of an application bean is determined
by which of these implicit objects it belongs to.

4.2 Request Scope Attributes
Every request you will need to handle in your templates is preprocessed by the Escenic filter chain (see
section 1.2.8), which determines whether it is an article request (a request to view a content item)
or a section request (a request to view a section page), and creates a corresponding set of request
scope attributes: that is, attributes of the request scope bean, which is called requestScope.

The request scope attributes create by the Escenic filter chain are:

Name/type/full reference Article request Section request

com.escenic.context
String
requestScope['com.escenic.context']

'art' 'sec'

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 37

Name/type/full reference Article request Section request

article
PresentationArticle
requestScope['article']

Requested content item Not present

section
Section
requestScope['section']

Section containing requested

content item1

Requested section

pool
PresentationPool
requestScope['pool']

Section page of section
containing requested content

item1

Section page of requested
section

publication
PresentationPublication
requestScope['publication']

Publication containing
requested content item

Publication containing
requested section

1 "Section containing requested content item" means one of the sections in which the content
item appears (usually, the section from which it has been requested), but not necessarily its home
section.

The "full references" in the above table show how these attributes can be unambiguously referenced
using the JSP expression language. The article request scope attribute, for example, can be
referenced as follows:

${requestScope['article']}

and its title field can be accessed as follows:

${requestScope['article'].fields.title}

You can, however, user a more compact notation to access them in most cases. The article request
scope attribute can usually be accessed as follows:

${article}

and its title field can be accessed as follows:

${article.fields.title}

This shorter form is the recommended way of accessing the Escenic request scope attributes (referred
to in the rest of this manual as the Escenic request beans). Note, however, that you must then
make sure you do not create any page scope attributes with the same name as one of the request beans.
If you create a page scope attribute with the name article, then

${article}

will return the page scope attribute, and you will have to use the full reference notation to access the
request bean.

You should not use the short notation described here to access the escenic.com.context
request scope attribute. (You are not allowed to use the "." character in JSP expression language
names.) Always use the full reference shown in the table above for this attribute.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 38

4.3 Accessing Bean Properties
Beans are objects: structured variables that instead of holding a single value, hold a set of related
values called properties. A PresentationArticle bean, for example, has more than 40 properties
describing various aspects of a content item. Its articleId property contains a unique ID for the
content item, its createdDateAsDate property contains the date on which it was created, its
author property is another bean containing information about the author of the content item.

You can access these properties with the JSP expression language by using dot notation. You
simply add the name of the property you are interested in to the end of the bean name, separated by a
dot. To access the article request bean's articleId property, for example, you can use:

${article.articleId}

A bean property may be a reference to another bean rather than a simple string or number.
PresentationArticle's author property, for example, is a reference to a Person bean. In this
case, you can use the same notation to access that bean's properties. You can, for example access the
name of the author of a content item as follows:

${article.author.name}

4.3.1 Indexed Properties

Some beans have properties that are Java arrays or lists. You can therefore add an index subscript
to a property name in order to specify which element in the list you want to access. The following
expression, for example, returns the name of the first author of an article:

${article.authors[0].name}

(Note that this returns exactly the same value as the second example in section 4.3. The authors
property returns an array containing all of a content item's authors; the author property returns the
first member of the array, just like this example.)

4.3.2 Mapped Properties

Some beans have properties that are Java maps. A map is like an array except that each member of
the array is identified by a key. You can therefore retrieve a specific member of such a property by
specifying the key that identifies it. You can, for example, access a section page area called "header"
area as follows:

${pool.rootElement.areas['header']}

In this example pool is a PresentationPool bean representing the section page requested by a user. Its
rootElement property is a PresentationElement bean representing the section page's root group
or grid. The grid's areas property is a mapped property containing all the areas in the grid, each of
which can be accessed by specifying its key (in this case, header).

The JSP expression language allows you replace the key specification syntax shown above with simple
dot notation. You can therefore also access the "header" area as follows:

${pool.rootElement.areas.header}

All of the examples in this manual use this simpler method of addressing mapped properties.

http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationarticle.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationpool.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationelement.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 39

5 The Publication Resources

The publication resources are files that define the underlying structure of a publication. In many
media organizations, the job of designing this structure will be carried out by a publication designer
or information architect rather than by a template developer, so you may never need to modify these
resources yourself. Nevertheless you need to know about them and understand how they determine
both the editorial interface displayed in Content Studio and the data structures available to you in your
templates.

There are four publication resources:

content-type
An XML file that defines the types of content items present in a publication.

layout-group
An XML file that defines the logical structure of the section pages in a publication.

image-version
An XML file that defines the different versions of images that are to be used in a publication (for
example thumbnails, small, large and so on).

feature
A plain text file containing property settings that govern the behavior of the Escenic Content
Engine.

The publication resources are stored in the following location in a publication WAR file or folder tree:

META-INF/escenic/publication-resources/escenic

The publication resources are fully described in the Escenic Content Engine Resource Reference.

5.1 content-type
The content-type resource determines (among other things):

• What kinds of content-items a publication can contain

• What fields each kind of content-item contains

• The type of each field

• Constraints on what you can enter in fields (maximum length, maximum and minimum values and
so on)

• How the fields will be displayed in Content Studio

• What relations each kind of article can have

The following sections provide an introduction to the content-type resource, and some of the things
it is used for. For a full, formal description of the content-type resource format and all the things
you can do with it, see here.

http://docs.escenic.com/ece-resource-ref/5.7/
http://docs.escenic.com/ece-resource-ref/5.7/content_type.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 40

5.1.1 Defining Content Types

The temp-dev content items discussed earlier have three fields: title, summary and body. These
fields are defined in the content item's content-type definition.

Look at one of the temp-dev content items in Content Studio. Click on the Properties tab in the
article editor to display general information about the article. You will see that its Content type is set
to Story:

If you select File > New from the menu bar you will see that the displayed submenu contains a Story
option. If you select this option, a new content item is created and opened in an editor tab. The editor
tab contains the same three fields: Title, Summary and Body.

Now go to your application server's web applications folder, then find and open temp-dev/META-
INF/escenic/publication-resources/escenic/content-type in a text editor. Search for
the string "Story" and you should find the following definition:

 <content-type name="news">
 <ui:label>Story</ui:label>
 <ui:description>A news story</ui:description>
 <ui:title-field>title</ui:title-field>
 <panel name="default">
 <ui:label>Main Content</ui:label>
 <ui:description>The main content fields</ui:description>
 <ref-field-group name="title"/>
 <ref-field-group name="summary"/>
 <ref-field-group name="body"/>
 </panel>
 <ref-relation-type-group name="attachments"/>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="title" type="basic" mime-type="text/plain"/>
 <field name="summary" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

This code defines a content type called "news" with the following characteristics:

• The label "Story". This is the name that is used wherever it appears in Content Studio.

• A Panel with the name "default" and the label "Main Content". If you look in Content Studio you
will see that the article fields are all displayed on a tab card called Main Content.

• References to three field groups called title, summary and body.

• Other characteristics we will look at later.

Immediately above the "news" element, you should find the definitions of the referenced field groups:

 <field-group name="title">
 <field mime-type="text/plain" type="basic" name="title">
 <ui:label>Title</ui:label>
 <ui:description>The title of the article</ui:description>
 <constraints>

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 41

 <required>true</required>
 </constraints>
 </field>
 </field-group>

 <field-group name="summary">
 <field mime-type="text/plain" type="basic" name="summary">
 <ui:label>Summary</ui:label>
 <ui:description>The summary text of the article.</ui:description>
 </field>
 </field-group>

 <field-group name="body">
 <field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:label>Body</ui:label>
 <ui:description>The body text of the article.</ui:description>
 </field>
 </field-group>

As you can see, each field group contains the definition of a single field with the same name as the
group, and they define the fields displayed on the Main Content tab in Content Studio.

The following example shows the definition of a new content type called "review", intended to be used
for review articles. Try adding it to the content-type resource after the existing "news" content type.

 <content-type name="review">
 <ui:label>Review</ui:label>
 <ui:description>A product review</ui:description>
 <ui:title-field>title</ui:title-field>
 <panel name="default">
 <ui:label>Main Content</ui:label>
 <ui:description>The main content fields</ui:description>
 <ref-field-group name="title"/>
 <ref-field-group name="summary"/>
 <ref-field-group name="body"/>
 <ref-field-group name="review"/>
 </panel>
 <ref-relation-type-group name="attachments"/>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="title" type="basic" mime-type="text/plain"/>
 <field name="summary" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

It is, as you will see, very similar to the original "news" content type definition. Apart from the name
and label, the only significant difference is the addition of a fourth field group called "review".

In order for this new content type to work, therefore, we must also add a definition for the new field
group it refers to:

 <field-group name="review">
 <field type="enumeration" name="review-type">
 <ui:label>Review Type</ui:label>
 <ui:description>Select the required type</ui:description>
 <enumeration value="film"/>
 <enumeration value="play"/>
 <enumeration value="book"/>
 <enumeration value="game"/>

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 42

 </field>

 <field type="number" name="score">
 <ui:label>Score</ui:label>
 <ui:description>Enter your rating</ui:description>
 <constraints>
 <minimum>1</minimum>
 <maximum>6</maximum>
 </constraints>
 </field>
 </field-group>

This field group, unlike the other field groups in the content-type file, contains more than one field.
Field groups, however, have no effect on the layout of the fields in Content Studio or on how fields are
accessed from templates. You can use them to group fields in whatever way is most convenient.

The fields in this group are of a different type from the fields we have seen so far:

• The review-type field is of type enumeration, and contains a list of alternative values.

• The score field is of type number and contains a constraints element that specifies the allowed
range for the field.

After making these changes to content-type, upload the new resource as described in section
1.4.2.2. Then restart Content Studio. Select File > New from the men bar: you will see that the
displayed submenu now contains a Review option, which you can select to create a review content
item. The editor displayed contains the new fields you have defined:

• Review Type is displayed as a combo box containing the options you specified.

• Score will only let you enter a value in the range 1-6. If you enter a value outside this range, then
the field title turns red to indicate that the value is invalid.

There are many other field types you can select from. For more information about field types, see
section 5.1.8. For a complete list of available field types, see here.

5.1.2 Defining Editor Panels

It is sometimes useful to be able to group a content type's fields and display the groups on separate
tabs or panels in Content Studio. You can, for example, move the "review" group of fields you created
to a separate Review Content panel as follows:

 <content-type name="review">
 <ui:label>Review</ui:label>
 <ui:description>A product review</ui:description>
 <ui:title-field>title</ui:title-field>

http://docs.escenic.com/ece-resource-ref/5.7/ct_field.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 43

 <panel name="default">
 <ui:label>Main Content</ui:label>
 <ui:description>The main content fields</ui:description>
 <ref-field-group name="title"/>
 <ref-field-group name="summary"/>
 <ref-field-group name="body"/>
 </panel>
 <panel name="review-panel">
 <ui:label>Review Content</ui:label>
 <ui:description>Additional review fields</ui:description>
 <ref-field-group name="review-fields"/>
 </panel>
 <ref-relation-type-group name="attachments"/>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="title" type="basic" mime-type="text/plain"/>
 <field name="summary" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

This will have the following effect in Content Studio:

5.1.3 Defining Summaries

The article links displayed on section pages are called summaries. A summary usually consists of a
subset of the fields in a content item, which are displayed along with a link to the full content item.
The fields that are to be used in a summary are defined using the summary element. In the following
example:

 <content-type name="review">
 <ui:label>Review</ui:label>
 <ui:description>A product review</ui:description>
 <ui:title-field>title</ui:title-field>
 <panel name="default">
 <ui:label>Main Content</ui:label>
 <ui:description>The main content fields</ui:description>
 <ref-field-group name="title"/>
 <ref-field-group name="summary"/>
 <ref-field-group name="body"/>
 <ref-field-group name="review"/>
 </panel>
 <ref-relation-type-group name="attachments"/>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="title" type="basic" mime-type="text/plain"/>
 <field name="summary" type="basic" mime-type="text/plain"/>
 </summary>

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 44

 </content-type>

the summary contains title and summary fields.

Note that the summary element has no effect on how summaries are created in your JSP templates:
the summary template example listed in section 3.5 would work with the above content type even if it
did not contain a summary element. The summary element is used by Content Studio to determine the
content of the summaries displayed in section page editors.

The summary element is also used by the Content Engine, which supports local overwriting of
summary fields. What this means is that when a section editor adds a content item to a section page,
she can also make local changes to the content of the summary fields: a content item title that reads
"England Loses Again" can be overwritten with "Humiliated!" on the section page without affecting
the main title. If the same content item appears in a second section, it can have yet another local title
there.

This functionality is "built-in" to the Content Engine: you do not need to do anything in your templates
to enable it.

Note that:

• You cannot use ref-field-group inside summary elements: you must directly specify the
fields to be included in the summary.

• You cannot use rich text fields (that is, basic fields with the MIME type application/xhtml
+xml) in summaries.

5.1.4 Content Item Relations

Content items can have relations to other content items. What specific kinds of relations a content item
is allowed to have depends upon content type, and is defined in the content-type resource: you may
already have noticed the

<ref-relation-type-group name="attachments"/>

element in the content type definitions we have looked at. For a detailed discussion of content item
relations, including their definition in the content-type resource, see chapter 6.

5.1.5 Dealing With Media Content

The news and review content types we have looked at so far only have textual content. How do you
deal with media content such as images, video clips and sound files? There is a link field type that can
be used to contain references to media objects, so you can use this to create content types specifically
designed for media objects. A content-type element is only allowed to contain one field of type
link, so you need to define a number of different content-types for handling different types of
media objects.

The temp-dev content-type resource contains the following content type definition for image
objects:

 <content-type name="image">
 <ui:label>Picture</ui:label>
 <ui:description>An image</ui:description>
 <ui:title-field>name</ui:title-field>
 <panel name="default">

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 45

 <ui:label>Image content</ui:label>
 <field mime-type="text/plain" type="basic" name="name">
 <ui:label>Name</ui:label>
 <ui:description>The name of the image</ui:description>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="description">
 <ui:label>Description</ui:label>
 </field>
 <field mime-type="text/plain" type="basic" name="alttext">
 <ui:label>Alternative text</ui:label>
 </field>
 <field name="binary" type="link">
 <relation>com.escenic.edit-media</relation>
 <constraints>
 <mime-type>image/jpeg</mime-type>
 <mime-type>image/png</mime-type>
 </constraints>
 </field>
 </panel>
 <panel name="crop">
 <ui:label>Crop</ui:label>
 <field name="alternates" type="basic" mime-type="application/json">
 <representations xmlns="http://xmlns.escenic.com/2009/representations"
 type="image-versions">
 <representation name="WideBig">
 <output width="572" height="204"/>
 <crop/>
 <resize/>
 </representation>
 <representation name="SmallSquare">
 <output width="150" height="150"/>
 <crop/>
 <resize/>
 </representation>
 </representations>
 </field>
 </panel>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="caption" type="basic" mime-type="text/plain"/>
 <field name="alttext" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

This content type's "default" panel contains a link field for the URL of an image file plus three other
fields for storing information about the image: name, description and alttext.

The "crop" panel contains a field that can be used to set up alternative image versions called
representations.

In a typical "newspaper-like" Escenic publication, media objects such as images are usually
"secondary" content items that appear embedded in text-based content items. This "embedding" is
achieved by means of relations. For more information about this, see chapter 6.

http://docs.escenic.com/ece-temp-dev-guide/5.7/hidden_content_types.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 46

5.1.6 Hidden Content Types

Any content type can be hidden by adding a ui:hidden element to it; it will then not appear in
Content Studio's File > New menu.

The following content-type element defines a hidden content type with the name news-old:

 <content-type name="news-old">
 <ui:hidden/>
 ...
 </content-type>

Hidden content types are accessed from application code in exactly the same way as ordinary visible
content types.

5.1.7 Controlling Content Item URLs

By default, the URL assigned to a published content item is generated from the content item's id,
prefixed by the string article and followed by the suffix .ece - for example:

article1234.ece

You can, however, replace these with more informative (or "pretty") URLs by adding url elements to
your publication's content-type elements. This element allows you to specify a template from which
more meaningful or "pretty" URLs are generated. The template is composed from any text you want,
plus a set of standard place-holders representing parts of a content item's publication date ({dd},
{MM}, {YY}), the content of selected content item fields (typically the title field) and so on.

The url element must be specified as the child of a content-type element, and determines the
URLs assigned to content items of thahrt type. It affects:

• Newly-created content items belonging to its parent content-type.

• Any existing content items belonging to its parent content-type that are updated after the
addition of the url element. The original URL of an updated content item is retained as an
alternative URL, and attempts to access the original URL are redirected to the new URL (the
Content Engine returns an HTTP 301 Moved Permanently response).

For detailed information and examples, see here.

5.1.8 More About Defining Fields

The content-type element you will use most frequently is almost certainly the field element. It is
also one of the more complicated elements in the content-type resource, so it is probably worth looking
at it more closely.

The field element has a type attribute that determines what type of data the field will accept. The
main type values are:

basic
Accepts any string data, including XHTML fragments. This is the default field type.

number
Accepts only numbers.

http://docs.escenic.com/ece-resource-ref/5.7/ct_url.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 47

boolean
Accepts only Boolean (true/false) values.

enumeration
Accepts only values from a predefined list.

uri
Accepts only URIs.

date
Accepts only date/time values.

schedule
Accepts only schedule definitions.

collection
Accepts only values from an atom feed.

The type of a field determines not only what kind of data it is capable of accepting, but also:

• What kind of constraints can be placed on the input data

• What kind of child elements the field element may contain

• What kind of data the field returns when accessed from a template, and therefore how the field is
best accessed.

These types are described in more detail in the following sections. Also discussed are field arrays,
complex fields and hidden fields.

Changing field type for any given field that is currently in use, is not supported. The behaviour if
done is undefined.

For a complete list of all available field types, see here.

5.1.8.1 Basic Fields

The following field element defines a basic field with the name title:

<field mime-type="text/plain" type="basic" name="title">
 <constraints>
 <required>true</required>
 </constraints>
</field>

Note the following points:

• The name attribute may not contain spaces and must start with a letter (not a number).

• The mime-type attribute specifies more precisely the type of data allowed in the field. Currently,
the following mime-type values are supported:

text/plain (default)
Any text. A simple text editing field is displayed in Content Studio.

application/xhmtl+xml
XHTML. An XHTML editing field is displayed in Content Studio. (Whenever this field is
selected, then XHTML formatting controls are displayed in the editor's Field Options tab.)

• The optional constraints child element specifies that a value is required.

http://docs.escenic.com/ece-resource-ref/5.7/ct_field.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 48

• The optional representations child element causes a basic field element to be rendered in
Content Studio as a set of image representations rather than as a text input field. It only has any
meaning to assign a representations element to a basic field element in a content-type that
also has a link field that references an image. For further information about this see section 5.3.

Accessing a Basic Field

To retrieve the content of a basic field in your templates:

${article.fields.title}

5.1.8.2 Number Fields

The following field element defines a number field with the name age:

<field type="number" name="age">
 <constraints>
 <minimum>18</minimum>
 <maximum>99</maximum>
 </constraints>
 <format>##</format>
</field>

Note the following points:

• The optional constraints child element specifies the allowed value range for the field.

• The optional format child element controls formatting in the input field in Content Studio.
format syntax is based on the Java DecimalFormat class. See https://docs.oracle.com/javase/8/
docs/api/java/text/DecimalFormat.html for details.

Accessing a Number Field

To retrieve the content of a number field in your templates:

${article.fields.age}

5.1.8.3 Boolean Fields

The following field element defines a boolean field with the name debug:

<field type="boolean" name="debug"/>

Note the following points:

• A debug field is displayed as a checkbox in Content Studio.

• It can contain only two values, true (checked) or false (not checked).

Accessing a Boolean Field

A boolean field returns a true boolean value, not a string. You can therefore simply test it directly in
your templates (using the JSTL if element, for example):

<c:if test="${article.fields.debug}">
 ...
</c:if>

https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 49

5.1.8.4 Enumeration Fields

The following field element defines an enumeration field with the name review-type:

<field type="enumeration" name="review-type">
 <enumeration value="film"/>
 <enumeration value="play"/>
 <enumeration value="book"/>
 <enumeration value="game"/>
</field>

Note the following points:

• in Content Studio an enumeration field is displayed either as a drop-down list (combo box) from
which the user can make a single selection or as multi-select list from which the user can make
multiple selections.

• The example above displays a drop-down list. To display a multi-select list you must add a
multiple="true" attribute to the field element.

Accessing an Enumeration Field

To retrieve the content of a single-select enumeration field in your templates:

${article.fields.review-type}

If multiple is set to true, the selections made by the user are stored in an array, so you can cycle
through the contents using a JSTL forEach element, for example:

 <c:forEach var="cinema" items="${article.fields.showing-in}">
 ${cinema}
 </c:forEach>

5.1.8.5 URI Fields

The following field element defines a uri field with the name homepage:

<field type="uri" name="homepage"/>

A uri field will only accept a valid URI (Uniform Resource Identifier) as input in Content Studio. URI
syntax is defined in the IETF's RFC 2396 (http://www.ietf.org/rfc/rfc2396.txt) and RFC 2732 (http://
www.ietf.org/rfc/rfc2732.txt).

Accessing a URI Field

To retrieve the content of a basic field in your templates:

${article.fields.homepage}

5.1.8.6 Link Fields

Link fields are mainly used to contain references to binary objects such as images, video and audio files
and so on. The following element defines a link field with the name binary.

<field name="binary" type="link">

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2732.txt

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 50

 <relation>com.escenic.edit-media</relation>
 <constraints>
 <mime-type>image/jpeg</mime-type>
 <mime-type>image/png</mime-type>
 </constraints>
</field>

Note the following points:

• The child relation element defines the relationship between the field and the objects it used
to reference. In this case, the value com.escenic.edit-media (currently the only supported
relation value) indicates that the field is to be used to reference binary media objects.

• The child constraints element lists the types of media objects the field is allowed to reference (in
this case, JPEG and PNG image files)

Accessing a Link Field

To retrieve the content of a link field in your templates:

${article.fields.binary.value.href}

The above example will always return a value (the URL of the referenced object). In the specific case
of link fields that reference images, however, there may be additional options. It is normally the case
that images are available in multiple versions, which are specified in the image-version resource
(see section 5.3). In the case of images, therefore, the expression shown above will return the URL of
the default version of the referenced image. If you want to retrieve a particular version, then you can
replace href with the name of the version you want. To retrieve an image version called thumbnail,
for example, you would need to enter:

${article.fields.binary.value.thumbnail}

If, on the other hand, the image versions have been defined using representation elements in the
content-type resource, then you would access them via the field containing the representations: for
further information about this see the Escenic Content Engine Advanced Developer Guide.

To get the MIME type of the object referenced in a link field, enter:

${article.fields.binary.value.mime-type}

5.1.8.7 Date Fields

The following field element defines a date field with the name startdate:

<field type="date" name="startdate"/>

A date field is displayed in Content Studio as two specialized fields, one for the date and one
for time of day. The content of a date field is stored as a UTC time in ISO-8601 format (that is,
YYYY-MM-DD'T'HH:mm:ss'Z') and is indexed as a date.

Accessing a date Field

To retrieve the content of a date field in your templates:

<fmt:formatDate value="${article.fields.startdate.value}" type="both"/>

http://docs.escenic.com/ece-advanced-temp-dev-guide/5.7/

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 51

5.1.8.8 Schedule Fields

A schedule field is a specialized date/time field that contains a schedule start and end date, an event
start and end time and an optional set of recurrence rules. Together, they define a sequence of date/
time values. Schedule fields are typically used in articles describing events such as concerts, meetings
etc.

A schedule field is defined as follows:

<field name="when" type="schedule">
 <ui:label>Schedule</ui:label>
</field>

A schedule is defined by:

• A schedule start date

• Either a schedule end date or a specified number of occurrences

• An event start and end time

• A recurrence specification (daily, weekly on Fridays, etc.)

When a content item containing a schedule field is stored, all of the event occurrences defined by the
schedule are indexed, and can be searched by their start date. You can search for a list of content items
contain scheduled events that start within a certain start date range.

You can limit the maximum number of occurrences users are allowed to specify by setting the
maxOccurrences property in /com/escenic/schedule/OccurrenceHelper.properties file
in one of you installation's configuration layers. If you do not specify this, then a default occurrence
limit of 100 is used. For information about configuration layers, see Configuring The Content Engine.

Accessing a Schedule Field

To retrieve the recurrence state of a schedule field in your templates:

${article.fields.when.value.recurring}

This returns true if recurrence is specified in the schedule field, or false if recurrence is not
specified.

To retrieve the first or only event occurrence defined by a schedule field:

${article.fields.when.value.instance}

To retrieve all the event occurrences defined by a schedule field:

${article.fields.when.value.instances}

This will return a java.util.SortedSet object containing one
neo.xredsys.presentation.PresentationScheduleInstance object for each event
occurrence. A neo.xredsys.presentation.PresentationScheduleInstance object contains
the start and end date/time of an event.

To display the start and end date/time of the first or only event occurrence defined by a schedule
field:

http://docs.escenic.com/ece-server-admin-guide/5.7/configuring_the_content_engine.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 52

From: <fmt:formatDate value="${article.fields.when.value.instance.startDateTime}"
 type="both"/>
To: <fmt:formatDate value="${article.fields.when.value.instance.endDateTime}"
 type="both"/>

To display the start and end date/time of all the event occurrences defined by a schedule field:

 <c:forEach items="${article.fields.when.value.instances}" var="instance">

 From: <fmt:formatDate value="${instance.startDateTime}" type="both"/>
 To: <fmt:formatDate value="${instance.endDateTime}" type="both"/>

 </c:forEach>

5.1.8.9 Collection Fields

A collection field is special field that can contain value from an atom feed.

A collection field is defined as follows:

<field name="collection" type="collection" mime-type="text/plain" src="http://j.mp/
cwaXJM" select="title">
 <ui:label>Collection</ui:label>
</field>

Accessing a Collection Field

To retrieve the origin of a collection field in your templates:

${article.fields.collection.value.origin}

To retrieve the value of a collection field:

${article.fields.collection.value.value}

5.1.8.10 Field Arrays

The following field element defines an array of basic fields with the name cities:

<field type="basic" name="cities">
 <array default="3" max="10"/>
</field>

Note the following points:

• You can make arrays of any field type.

• The array element's default attribute specifies the number of fields that are displayed by
default, and max specifies the maximum number of fields that can be displayed.

Accessing a Field Array

The values input by the user are stored in an array, so you can cycle through the contents using a JSTL
forEach element, for example:

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 53

 <c:forEach var="city" items="${article.fields.cities}">
 ${city}
 </c:forEach>

5.1.8.11 Complex Fields

A complex field is an array of related fields that are displayed as a group in Content Studio. The
component fields can be of any type except complex.

The following code defines a complex field with the name details:

<field type="complex" name="details">
 <complex>
 <field type="basic" name="availability"/>
 <field type="basic" name="colors"/>
 <field type="number" name="price"/>
 </complex>
</field>

You can create arrays of complex fields.

Accessing a Complex Field

The values input into the component fields are stored in a map, using the field names as keys. This
means you can access them as follows:

<p>Available from: ${article.fields.details.value.availability}</p>
<p>Colors: ${article.fields.details.value.colors}</p>
<p>Price: ${article.fields.details.value.price}</p>

5.1.8.12 Hidden Fields

Any field can be hidden by adding a ui:hidden element to it.

The following field element defines a hidden field with the name result:

<field type="basic" name="result">
 <ui:hidden/>
</field>

Note the following points:

• A hidden field is not displayed in Content Studio.

• Hidden fields are intended to be filled by application code.

Accessing a Hidden Field

Hidden fields are accessed in exactly the same way as ordinary visible fields.

5.1.9 Changing Content Types That Are in Use

Most changes you make to content type definitions will be made during the publication design phase
before it is in active use. Occasionally, however, you may need to update content types that are in
active use in a live system. For publications that are actively updated 24/7 there may be little or no
opportunity to stop all Content Studio editing activity while the change is made.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 54

The precise consequences of changing a content type that is in use depends on which of the following
three classes the change belongs to:

• Compatible change

• Incompatible change

• Unsupported change

5.1.9.1 Compatible Changes

A compatible change to a content type causes no problems or side effects in Content Studio. The
following changes are compatible changes:

• Changes to a field's ui:label.

• Changes to a field's ui:description.

Compatible changes do not necessarily become visible in Content Studio immediately after the
changed content-type resource is uploaded to the Content Engine: they become visible the next
time Content Studio refreshes the affected content type for some reason or a content item of the
affected type is opened for editing.

5.1.9.2 Incompatible Change

All the following types of change are classed as incompatible changes:

• Adding new optional field

• Making a mandatory field optional

• Adding a new option to an enumeration field

• Removing any constraint

• Adding a new field to a complex field

If a content item is open for editing in Content Studio when an incompatible change is made to its
content type, then when the user saves his changes, a message is displayed stating that the content
type has changed in an incompatible way. When the user clicks OK, the change is saved in the usual
way but the editor tab is then immediately closed and reopened, incorporating the content type
change. The user can then continue editing with the content type change in effect.

5.1.9.3 Unsupported Change

All other types of change to content types are unsupported changes. This means Content Studio
cannot save a content item that is affected by such a change.

If you need to make an unsupported change to a content type, you should inform all Content Studio
users so that they can avoid editing content items of the affected type while the updated content-
type resource is uploaded.

5.2 layout-group
The layout-group publication resource defines the logical structure of the layouts available for use
on a publication's section pages.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 55

The following sections provide an introduction to the layout-group resource, and some of the things
it is used for. For a full, formal description of the layout-group resource format and all the things
you can do with it, see here.

5.2.1 Defining Section Page Layouts

Go to your application server's web applications folder, then find and open temp-dev/META-INF/
escenic/publication-resources/escenic/layout-group in a text editor.

You should see the following code:

<groups xmlns="http://xmlns.escenic.com/2008/layout-group"
 xmlns:ct="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">
 <group name="news" root="true">
 <ui:label>News</ui:label>
 <area name="header">
 <ui:label>Header</ui:label>
 <ui:description>Content placed here will appear at top of page</ui:description>
 <ct:options scope="current">
 <ct:field type="enumeration" name="news-area-background">
 <ui:label>Area background</ui:label>
 <ui:description>Changes the area background</ui:description>
 <ct:enumeration value="white">
 <ui:label>white</ui:label>
 </ct:enumeration>
 <ct:enumeration value="blue">
 <ui:label>blue</ui:label>
 </ct:enumeration>
 <ct:enumeration value="red">
 <ui:label>red</ui:label>
 </ct:enumeration>
 </ct:field>
 </ct:options>
 <ct:options>
 <ct:field type="enumeration" name="border">
 <ui:label>Style</ui:label>
 <ui:description>Sets the style of the header</ui:description>
 <ct:enumeration value="border: 1px solid black;">
 <ui:label>Border</ui:label>
 </ct:enumeration>
 <ct:enumeration value="border: 5px solid black;">
 <ui:label>Fat Border</ui:label>
 </ct:enumeration>
 <ct:enumeration value="background: #F55;">
 <ui:label>Red Background</ui:label>
 </ct:enumeration>
 </ct:field>
 </ct:options>
 </area>
 <area name="rightcolumn">
 <ui:label>Right Column</ui:label>
 <ui:description>Content placed here will appear in the right column</
ui:description>
 </area>
 <area name="center">
 <ui:label>Center Column</ui:label>

http://docs.escenic.com/ece-resource-ref/5.7/layout_group.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 56

 <ui:description>Content placed here will appear in the Center column</
ui:description>
 <ref-group name="two-col"/>
 <ref-group name="three-col"/>
 </area>
 </group>
 <group name="two-col">
 <area name="left"/>
 <area name="right"/>
 </group>
 <group name="three-col">
 <area name="left"/>
 <area name="center"/>
 <area name="right"/>
 </group>
</groups>

This specifies that:

• There is one layout group available for structuring section pages, called news.

• It contains three areas called header, rightcolumn and center.

• The header area has two sets of options that can be set in Content Studio. The "Area background"
option applies to the whole area, while the "Style" options applies to the individual content items
placed in the area. For more information about this, see options.

• The center area in section pages that use the news layout can be subdivided by inserting two-
col and/or three-col groups using Content Studio.

If you start Content Studio, log in to the temp-dev publication and open the New Articles section's
active section page, then you will see this structure reflected in the displayed editor:

The section page contains three areas called Header, Right Column and Center Column. If
you right-click on Center Column, then the displayed menu's Insert option will show a submenu
with the options Insert new Two-col group and Insert new Three-col group. At the top of the
section page editor is a combo box field with the name Section page descriptor containing the
name of this layout group (News). If you click on the combo box, you will see that News is the only
possible value for the field - no other layout group is available.

http://docs.escenic.com/ece-resource-ref/5.7/ct_options.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 57

To make an alternative layout, copy the news group in the layout group resource, rename it and
simplify it by deleting a few elements as follows:

 <group name="simple" root="true">
 <ui:label>Simple</ui:label>
 <area name="header"/>
 <area name="center">
 <ui:label>Center Column</ui:label>
 <ui:description>Content placed here will appear in the Center column</
ui:description>
 <ref-group name="two-col"/>
 </area>
 </group>

Upload the modified layout-group resource as described in section 1.4.2.2. Then restart Content
Studio and open the New Articles section's section page again. Select the Section page descriptor
combo box again. This time it should contain a second option, Simple. If you select Simple then you
will see that the section page structure displayed in the section page editor is simplified accordingly:

It is the group element's root attribute that determines whether or not a group can be used as
a section page layout. The groups two-col and three-col do not appear in the Section page
descriptor combo box's list because their root attributes are not set to true.

5.2.2 Rendering Section Page Layouts

Note that what is defined in the layout-groups resource is the logical structure of the section
page layouts, not their graphical appearance. It specifies the containment rules for groups and areas,
but it does not say anything about where they are located on the page (although the names in the
example hint at locations), nor does it say anything about the appearance of the groups and areas.
These things are all defined in your JSP templates.

In order to write a template that renders section pages correctly, you have to know the section page
layout's logical structure. For a template that renders the section page layout discussed in this section,
see section 3.4. In a more complex publication with multiple section page layouts (root groups) it
would be necessary to first test the section page's root group to find out which layout is in use. The
following code uses the JSTL choose element to distinguish between our news and simple layouts:

<c:choose>
 <c:when test='${pool.rootElement.type == "news"}'>
 ...generate news layout...
 </c:when>
 <c:when test='${pool.rootElement.type == "simple"}'>
 ...generate simple layout...
 </c:when>
 <c:otherwise>
 ...handle error...
 </c:otherwise>
</c:choose>

5.2.3 Area and Group Options

The general objective of the Escenic system is to separate content creation and editing from layout:
creating and editing is the responsibility of editing staff, layout is the responsibility of designers and
template developers. When editing a section page, the Content Studio can choose what to place on the

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 58

page and where to place it, but cannot in general modify the appearance of the teasers placed on the
page.

Area and group options provide a means of softening this division of responsibilities and providing
editorial staff with some additional control over section page layout. The news group's header area is
defined as follows in the layout-group resource:

 <area name="header">
 <ui:label>Header</ui:label>
 <ui:description>Content placed here will appear at top of page</ui:description>
 <ct:options scope="current">
 <ct:field type="enumeration" name="news-area-background">
 <ui:label>Area background</ui:label>
 <ui:description>Changes the area background</ui:description>
 <ct:enumeration value="white">
 <ui:label>white</ui:label>
 </ct:enumeration>
 <ct:enumeration value="blue">
 <ui:label>blue</ui:label>
 </ct:enumeration>
 <ct:enumeration value="red">
 <ui:label>red</ui:label>
 </ct:enumeration>
 </ct:field>
 </ct:options>
 <ct:options>
 <ct:field type="enumeration" name="border">
 <ui:label>Style</ui:label>
 <ui:description>Sets the style of the header</ui:description>
 <ct:enumeration value="border: 1px solid black;">
 <ui:label>Border</ui:label>
 </ct:enumeration>
 <ct:enumeration value="border: 5px solid black;">
 <ui:label>Fat Border</ui:label>
 </ct:enumeration>
 <ct:enumeration value="background: #F55;">
 <ui:label>Red Background</ui:label>
 </ct:enumeration>
 </ct:field>
 </ct:options>
 </area>

As you can see there are two sets of options defined in the header area:

• The first ct:options element has a scope attribute set to "current". This means that the
options it defines apply to the header area itself. It defines an option called news-area-
background, an enumeration containing three CSS settings. The options defined here are
displayed in Content Studio whenever the user selects the header area itself.

• The second ct:options element has no scope attribute. This means that it uses the default
scope setting, "items", and the options it defines apply to the content of the header area.
It is an enumeration containing three CSS settings labelled Border, Fat Border and Red
Background. The options defined here are displayed in Content Studio whenever the user selects a
content item summary placed in the header area.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 59

Note that the ct:options element is not actually a member of the layout-group namespace, it is
"borrowed" from the content-type namespace. If you use this element, therefore, you must include
a declaration of the content-type namespace in the layout-group resource, as follows:

<groups xmlns="http://xmlns.escenic.com/2008/layout-group"
 xmlns:ct="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">
...
</groups>

Any option values defined in this way are made available to the template developer in
PresentationElement beans that represent content item summaries. The options are made
available in a Map field called options so that they can be addressed by name. The options for the
area itself can be retrieved from the area using JSTL expression like this:

${pool.rootElement.areas.header.options['news-area-background']}

The options for the individual content items in the area can retrieved as shown in this extract from the
section page template group/news.jsp:

 <div style="${pool.rootElement.areas.header.items[0].options.border}">
 <c:set var="element" value="${pool.rootElement.areas.header.items[0]}"
 scope="request"/>
 <jsp:include page="ats.jsp"/>
 </div>

To see the whole of the above JSP file, look in section 3.4.

You can add ct:option elements to group elements as well as to area elements, and use them
in a similar way. It is particularly useful to add ct:option elements to root groups. Adding a
ct:option element to a root group makes it possible to change the layout of entire pages from
within Content Studio.

It is important to be clear about how the various different kinds of options are applied:

• Group options apply to the group itself.

• Area options (scope="current") apply to the area itself.

• Area item options apply to the content of the area.

You can see this difference in the way Content Studio displays options. Group and area options are
displayed when the group/area itself are selected, whereas area item options are displayed whenever
one of the elements in the area is selected. In the example shown above, for example, each teaser
added to the header area can have a different border option setting.

A group placed inside an area can therefore have both area item options defined in the enclosing area
and its own group options.

5.3 image-version
Use of the image-version resource is deprecated. You should use representation elements
in the content-type resource instead, where possible. (In other words, you should only use

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 60

image-version if you require functionality that cannot be provided using representation
elements.)

The Content Engine can generate different versions of images for use in different contexts: large
versions for use in articles and thumbnails for use for front page teasers, for example. The image-
version resource predefines the different image versions that may be generated. The usual case
is that all the versions used in a publication are down-sampled and possibly compressed from the
original image. The image-version resource therefore has:

• A single originalVersion element that specifies an id and a label for the original images

• A version element for each down-sampled image version. These elements also specify an id and
a label, plus information regarding the down-sampling operation to be performed, such as the
required resolution (maxWidth and maxHeight in pixels), the required format and so on.

Here is an example image-version resource that defines two image versions, thumbnail and big.

<imageDef>
 <originalVersion id="original">
 <label>Original</label>
 </originalVersion>

 <version id="thumbnail">
 <label>Thumbnail</label>
 <maxWidth pix="75"/>
 <maxHeight pix="75"/>
 <fallback operation="skip"/>
 <format name="jpg" />
 </version>

 <version id="big">
 <label>Big</label>
 <maxWidth pix="200"/>
 <maxHeight pix="200"/>
 <fallback operation="skip"/>
 <format name="jpg" compression="0.75"/>
 </version>
</imageDef>

This resource is now partially superseded by the representation element in the content-type
resource. The representation element allows you to define variants of an image that have a specified
height and width. Image variants defined using the representation element do not currently
offer all the functionality provided by the image-version resource, but they give increased "editor
control". Representations appear as crop windows superimposed over the base image in Content
Studio, which an editor can move around and resize in order to select a specific area of the image for
publication.

For a full, formal description of the image-version resource format and all the things you can do
with it, see image-versions.

5.4 feature
Unlike the other publication resources, the feature resource is not an XML file. It is a plain text file
containing a series of simple property settings like this:

http://docs.escenic.com/ece-resource-ref/5.7/image_versions.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 61

allowFrontPageAsHomeSection=true

All the property settings consist of a single keyword=value pair like the one above, and modify the
behavior of the publication in some way. For a full, formal description of the feature resource format
and all the things you can do with it, see feature.

5.5 User Interface Hints
You have probably noticed that the resource file examples in section 5.1 and section 5.2 contain some
elements with the prefix ui:. These elements are user interface hints, and the ui: prefix identifies
them as belonging to the http://xmlns.escenic.com/2008/interface-hints namespace.

If you look at the syntax diagrams for the content-type and content-type resources you will see that
many of them include the placeholder ANY-FOREIGN-ELEMENT. This placeholder is used to indicate
that an element can contain elements from any foreign namespace, but is primarily intended to
indicate that you can insert elements from the interface-hints namespace.

Use of the interface-hints elements is entirely optional - you can create a working content-
type or layout-group resource without using them. By using them, however, you can create a more
user-friendly interface for your publication in Content Studio.

The following sections discuss the use of some of the most frequently used interface-hints
elements. For full details about all elements in this namespace, see interface-hints.

5.5.1 label

The interface-hints element you will probably make most use of is label. By default, Content
Studio generates labels for user interface components from the name attribute of the resource file
elements they are based on, by simply capitalizing the first letter of the name. A field element called
title in the content-type resource, for example, will result in the field label Title in Content
Studio. If, however, you want the field to be called Headline in Content Studio, then you can achieve
this by adding a ui:label element as follows:

<field type="basic" name="title">
 <ui:label>Headline</ui:label>
</field>

The other important function of the label element is to enable multilingual user interfaces. An element
can have several child label elements, each with a different xml:lang attribute identifying its
language. For example:

<field type="basic" name="title">
 <ui:label xml:lang="fr">Titre</ui:label>
 <ui:label xml:lang="de">Titel</ui:label>
</field>

5.5.2 description

You can add more explanatory information to resource file elements with child description
elements, which will be used where appropriate in Content Studio, for example as help bubbles
displayed when the mouse is held over a user interface component:

http://docs.escenic.com/ece-resource-ref/5.7/feature.html
http://docs.escenic.com/ece-resource-ref/5.7/content-type.html
http://docs.escenic.com/ece-resource-ref/5.7/layout-group.html
http://docs.escenic.com/ece-resource-ref/5.7/interface_hints.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 62

<field type="basic" name="title">
 <ui:description>Enter the title of your article in this field.</ui:description>
</field>

5.5.3 value-if-unset

This is a very useful element that you can use to specify default values for fields:

<field type="uri" name="homepage">
 <ui:value-if-unset>http://www.escenic.com/</ui:value-if-unset>
</field>

5.5.4 group

You can use the group element in your content-type resource to define groups of content types
that will be used for filtering search results in Content Studio. The following entries in temp-dev's
content-type resource:

<ui:group name="articles">
 <ui:label>Stories</ui:label>
 <ui:ref-content-type name="news"/>
</ui:group>

<ui:group name="image">
 <ui:label>Pictures</ui:label>
 <ui:ref-content-type name="image"/>
</ui:group>

result in two buttons being displayed on the Search panel in Content Studio:

Clicking on the Pictures button will cause the current search results to be filtered to contain only
content items of type image. A group can of course contain more than one ref-content-type
element, so you can create filters that select several content types.

5.5.5 style

You can use the style element to control the appearance of content in Content Studio's rich text fields
in (that is, basic fields where mime-type is set to application/xhtml+xml) using CSS. You can
put any standard CSS in the body of the element, giving you detailed control over the appearance and
layout of rich text field content in Content Studio. To set the color of h1 and h2 headings in a field, for
example, you could specify:

<field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:style>
 h1 {color:red}
 h2 {color:green}
 </ui:style>
</field>

You can also use this element to style in-line relations so that Content Studio users can easily
distinguish between relations to different content types. To do this, you must create CSS classes with
names of the form:

escenic-content-type-name

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 63

To make in-line links to news content items green and in-line links to blog content items red, for
example, you could specify:

<field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:style>
 .escenic-news { color: green;}
 .escenic-blog {color: red;}
 </ui:style>
</field>

The style element can only be used with basic fields where mime-type is set to
application/xhtml+xml. It has no effect if used with any other elements.

For hints and examples about more advanced uses of the style element, see style.

5.5.6 style-class

You can use the style-class element together with the style element to add style buttons to the
editing toolbar Content Studio displays with rich text fields. You could, for example, create a style
button for marking text green as follows:

<field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:style>span.green { color: green; }</ui:style>
 <ui:style-class name="green">
 <ui:icon>http://my.server/myicon.png</ui:icon>
 <ui:description>Mark text green</ui:description>
 </ui:style-class>
</field>

For hints and examples about more advanced uses of the style-class element, see style-class.

5.5.7 icon

This element lets you set the icons used in Content Studio to represent content items (for example,
in search result lists, inboxes, on editor tabs and so on) and CSS styling buttons for rich text field
editors. You can only specify this element as the child of a content-type element or style-class
element: it is ignored in all other contexts. You can either specify the name of one of Content Engine's
predefined icons, for example:

<ui:icon>audio</ui:icon>

or the absolute URI of an image that you want to use as an icon. The image must be accessible from all
the machines on which Content Studio will run. For example:

<ui:icon>http://my-company-server/icons/custom-audio.png</ui:icon>

For a complete list of all the predefined icons, see icon.

5.5.8 inline

The inline element can be used to define a set of options hence allowing for a better control
over positioning of images within a content field (that is, basic field where mime-type is set to
application/xhtml+xml)

http://docs.escenic.com/ece-resource-ref/5.7/ih_style.html
http://docs.escenic.com/ece-resource-ref/5.7/ih_style_class.html
http://docs.escenic.com/ece-resource-ref/5.7/ih_icon.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 64

You could, for example, enable/disable the image alignment option on a field by setting the value
attribute to on or off. In addition a default alignment can be defined using value-if-unset as
follows:

<field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:inline>
 <ui:alignment value="on">
 <ui:value-if-unset>top</ui:value-if-unset>
 </ui:alignment>
 </ui:inline>
</field>

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 65

6 Relations

A content item can be related to a number of other content items. A text content item such as a news
article, for example, might have relations to:

• Images to be displayed with the article

• An image to be displayed with the article summary on section pages

• Other articles on the same subject, to be displayed as a list of links

• Related media objects, such as audio and video files

• Links to resources such as external web pages

6.1 Defining Relations
The Content Engine's relation concept allows these related items to be managed in an organized and
standardized way.

The news content type defined in temp-dev's content-type resource file contains the following
reference:

<ref-relation-type-group name="attachments"/>

Elsewhere in the content-type resource the relation type group attachments is defined as follows:

<relation-type-group name="attachments">
 <relation-type name="images">
 <ui:label>Pictures</ui:label>
 </relation-type>
 <relation-type name="stories">
 <ui:label>Stories</ui:label>
 </relation-type>
</relation-type-group>

In other words, the news content type supports two relation types: articles and image.

6.2 Creating Relations
These relation types appear in Content Studio editors as drop zones, areas into which users can drag
and drop items they want to relate to the content item they are editing. If you start Content Studio
and open a news content item for editing, you should see the drop zones displayed to the right of the
content item's fields:

If you cannot see the drop zones, select View > Show content relations from the main menu to
display them.

To add relations to a content item, therefore, a Content Studio user simply has to drag the required
items into one of these drop zones. The user needs to know the purpose of each relation, however,
since Content Studio exercises no control over what the user drops in the zones. In this case, it will not

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 66

prevent you from dropping an image content item in the Stories drop zone, or from dropping a text
content item in the Pictures zone.

Normally, relation drop zones are displayed in a relatively small area to the right of a content item's
fields in Content Studio. You can, however, force them to be displayed in the main editing area along
with the content item fields if required. See section 6.4 for further information.

6.3 Rendering Relations
Related content items are made available in JSP templates as PresentationRelationArticle beans. The
PresentationArticle bean has a relatedElements property that returns a map from relation type to
PresentationElement beans representing all the content item's related items.

PresentationElement beans that represent summaries hold the extra information about the
relationship as well as a method to obtain the PresentationArticle bean of the related object.
Therefore, it is up to the template developer to choose between information particular to this
relationship and information that applies to all relations with this content item.

The temp-dev publication's article/markup/news.jsp template contains the following code to
display links to all related items:

<div class="stories">
 <h3>Related articles</h3>

 <c:forEach items="${article.relatedItems}" var="relationType">
 <c:forEach items="${relationType.value.items}" var="related">

 ${related.fields.title}

 </c:forEach>
 </c:forEach>

</div>

As it stands, however, this list may well include links to images dropped onto the content item's
Pictures zone in Content Studio. Given the title "Related articles", this is probably not the intention
- more than likely what is wanted is a list that only contains other news items that have been dropped
into the Stories drop zone.

You can achieve this by using relation types - in other words the drop zone onto which the
Content Studio user dropped it. To select only items that were dropped into the Stories zone,
therefore, you can modify this code as follows:

<div class="stories">
 <h3>Related articles</h3>

 <c:forEach items="${article.relatedElements.stories.items}" var="related">

 ${related.fields.title}

 </c:forEach>

</div>

http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationrelationarticle.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationarticle.html
http://docs.escenic.com/ece-bean-ref/5.7/class_neo_xredsys_presentation_presentationarticle_relatedelements.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 67

This, however, ignores the images dropped onto the Pictures zone. Remedy this as follows:

<div class="images">
 <h3>Related pictures</h3>

 <c:forEach items="${article.relatedElements.images.items}" var="related">

 <img title="${related.fields.caption}"
 src="${related.content.fields.binary.value.thumbnail}"
 alt="${related.fields.alttext}"/>

 </c:forEach>

</div>

Note how the code mixes summary fields (related.fields.caption) with content item fields
(related.content.fields.binary.value.thumbnail).

6.4 Gallery Relations
In most cases, relations represent secondary content in a content item: they represent images or video
that accompany an article, or links to other relates articles. It therefore makes sense for them to be
displayed on the far right of the editor pane in Content Studio. Occasionally, however, this is not the
case. In some kinds of content items, relations represent the primary content. The image galleries seen
in many web publications are an example of this kind of content item. In an image gallery, images are
the primary content, so they should be presented as primary content in Content Studio.

You can cause relations to be displayed as primary content in Content Studio by adding a ui:editor-
style element to a relation-type definition in the content-type resource.

The following example shows how it is used:

<relation-type name="gallery">
 <ui:editor-style>gallery</ui:editor-style>
</relation-type>

ui:editor-style only has any effect if it is the child of a relation-type element and if it
contains the value gallery. It causes relations of the specified type to be displayed like ordinary fields
in Content Studio. It only affects display in Content Studio and has no other effects. Despite the use
of the keyword "gallery", it is not restricted to use with image relations: you can use it for any relation
type that you want to appear in the main part of the editor pane in Content Studio.

http://docs.escenic.com/ece-resource-ref/5.7/ih_editor_style.html
http://docs.escenic.com/ece-resource-ref/5.7/ih_editor_style.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 68

7 Tagging

Content Studio enables journalists and editors to tag content by attaching keywords called tags to
content items. Throughout this chapter, the word tag is used to refer to a tagging keyword, (whereas
elsewhere in this manual it is used to refer to an HTML or JSP element name).

Tags provide a simple and flexible way of categorizing and grouping content items for search and
retrieval purposes. A journalist might, for example tag a travel article about Thailand with the tags
Travel and Thailand. It would then be possible to find the article by searching for "Travel" or
"Thailand" even if neither of those words appear in the article itself.

Tags can be organized in hierarchies, in order to be able to represent logical associations between
the concepts they represent. If the tag Thailand, for example, is organized under another tag called
Asia, then a search for content using the tags Travel and Asia would return the Thailand article
(possibly along with other travel articles about other Asian countries). Structuring tags in this way is
optional: it is also possible to just have a collection of unrelated tags.

In order for tagging to be enabled, the system administrator must first create at least one "container"
for tags, called a tag structure. How many tag structures are maintained at a site is a design decision.
You might choose to have a single tag structure for all tags, or a set of thematically organized tag
structures such as geography, sport, culture, politics and so on.

Tag structures are created using the escenic-admin web application. You can also use escenic-
admin to import predefined sets of tags to tag structures. For details of how to:

• Create tag structures

• Create tag syndication files

• Import tag syndication files

see Create a Tag Structure.

Once at least one tag structure has been created, tagging functions can then be made available to
Content Studio users, as described in section 7.1. Subject to various controls, Content Studio users will
then be able to:

• Attach existing tags to content items

• Set the relevance of attached tags (indicating how relevant the tag is to this particular content
item)

• Change the order of the tags attached to a content item

• Create and delete tags

• Re-organize tag structures

7.1 Controlling Tag Usage
You can control the use of tags by specifying:

• Which content types in a publication may be tagged

http://docs.escenic.com/ece-server-admin-guide/5.7/create_tag_structure.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 69

• Which tag structures may be used to tag each content type

• Who is allowed to create/delete and reorganize tags

7.1.1 Controlling Tagging

By default, no content items may be tagged. You can enable tagging on a per-content type basis by
adding ui:tag-scheme elements to a publication's content-type resource. Adding a ui:tag-
scheme element to a content-type element enables access to one tag structure. You can enable
access to several tag structures by adding multiple ui:tag-scheme elements.

For example:

<content-type name="news">
 <ui:tag-scheme>tag:iptc-topics.escenic.com,2002</ui:tag-scheme>
 <ui:tag-scheme>tag:folksonomy.escenic.com,2002</ui:tag-scheme>
...
</content-type>

Note that the content of a ui:tag-scheme element must be the scheme of one of the site's tag
structures. A tag structure scheme is a URI that uniquely identifies the tag structure. The schemes of
all tag structures defined on a Content Engine site are listed on the escenic-admin application's tag
management page (see Manage Tag Structures).

The tagging functionality in Content Studio is exposed in a content editor Tags tab. If you edit a
content item whose content type definition contains no ui:tag-scheme elements, then no Tags tab
is displayed and tagging is not possible. If the content item's type definition does contain one or more
ui:tag-scheme, elements, then a Tags tab is displayed, and you will have access to tags belonging to
the specified tag structures.

7.1.2 Controlling Tag Creation and Deletion

All users with journalist rights are allowed to add tags to content items and remove them. Special
access rights, however, are required to create, delete and reorganize tags. These access rights can be
assigned to users by the publication administrator using Web Studio (see Editing Users and Persons).

7.2 Rendering tags
If any tags have been attached to a content item, then they are available via the
PresentationArticle bean's tags property. This property is a collection of PresentationTag
beans, each of which has the following properties:

name
This tag's name.

parent
This tag's parent tag (if any).

children
This tag's child tags (if any).

relevance
A number between 0 (not relevant) and 1 (highly relevant) indicating how relevant this tag is to
the content item to which it is attached.

http://docs.escenic.com/ece-server-admin-guide/5.7/manage_tag_structures.html
http://docs.escenic.com/ece-pub-admin-guide/5.7/editing_users_and_persons.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 70

Tags can therefore easily be accessed using JSTL.

7.2.1 Accessing Content Item Tags

The following example lists all of a content item's tags, plus the relevance of each tag:

 <c:forEach var="tag" items="${article.tags}">
 ${tag.name} ${tag.relevance}
 </c:forEach>

The relevance value would not normally be displayed like this, but you might use it to determine:

• Whether or not to display the tag name

• How to display the tag name

Note that tags are returned by ${article.tags} in the same order that they are displayed in
Content Studio. The Content Studio user is allowed to rearrange the order of the tags, so there may be
significance in the order.

7.3 Accessing Parent Tags
The following example lists the parents (if any) of a content item's tags:

 <c:forEach var="tag" items="${article.tags}">
 ${tag.parent.name}
 </c:forEach>

7.4 Accessing Child Tags
The following example lists the children (if any) of a content item's tags:

 <c:forEach var="tag" items="${article.tags}">
 <c:forEach var="childTag" items="${tag.children}">
 ${childTag.name}
 </c:forEach>
 </c:forEach>

7.5 Tags and Search
Tags are usually indexed along with other content, so that tags can be searched for. If Solr's faceting
functionality is enabled at your site, then it is also possible to make more sophisticated use of tags to
provide "drill-down" links in search results, and tag clouds. For further information about this, see
Using Solr.

http://docs.escenic.com/ece-advanced-temp-dev-guide/5.7/using_solr.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 71

8 The Tag Libraries

The Escenic tag libraries played a central role in earlier versions of the Escenic Content Engine:
most of the functionality in Escenic templates were provided by Escenic tag library tags. This is no
longer the case: the central tools for Escenic template designers are now JSTL and the JSP expression
language, which provide a simpler, more standard and more intuitive means of accessing the content
of the Escenic beans. Some of the Escenic tags are still useful, but many are no longer needed.

All of the Escenic tag libraries are retained in order to ensure backwards compatibility with older
applications. They are:

template Tag Library
This library contains tags for manipulating templates.

publication Tag Library
This library contains only one tag, use which can be used to change the current publication.

article Tag Library
This library contains tags for retrieving information from PresentationArticle beans.

section Tag Library
This library contains tags for retrieving information from Section beans.

util Tag Library
This library contains a variety of general-purpose tags.

collection Tag Library
This library contains tags for manipulating collections.

view Tag Library
This library contains tags for manipulating tree structures stored in View beans.

profile Tag Library
This library contains tags for managing user profiles.

tag Tag Library
This library contains tags for accessing tags (PresentationTag beans).

The tag libraries are described in detail in the Escenic Tag Library Reference.

The tag descriptions in the Tag Library Reference clearly indicate which tags are deprecated (no
longer recommended for use). You should not use deprecated tags in new applications (and you should
avoid their use if possible in new additions to old applications).

8.1 Common Attributes
Some Escenic tag attributes are used in the same way everywhere they appear:

id Attributes

In contrast to some other tag libraries (including the Struts tag libraries), id attributes are often
not required. Whether or not an id attribute is required, it always has the same purpose. The id
attribute is used to specify both the name of a scripting variable and the key of a page attribute that

http://docs.escenic.com/ece-taglib-ref/5.7/template.html
http://docs.escenic.com/ece-taglib-ref/5.7/publication.html
http://docs.escenic.com/ece-taglib-ref/5.7/article.html
http://docs.escenic.com/ece-taglib-ref/5.7/section.html
http://docs.escenic.com/ece-taglib-ref/5.7/util.html
http://docs.escenic.com/ece-taglib-ref/5.7/collection.html
http://docs.escenic.com/ece-taglib-ref/5.7/view.html
http://docs.escenic.com/ece-taglib-ref/5.7/profile.html
http://docs.escenic.com/ece-taglib-ref/5.7/tag.html
http://docs.escenic.com/ece-taglib-ref/5.7/index.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 72

can be used to access the value returned by the tag. For example, the template in section 3.3 shows the
article:field tag used to retrieve article fields as follows:

<h1><article:field field="headline" /></h1>

However, article:field has an id attribute, so the same effect could be achieved as follows:

<article:field field="headline" id="myHeadline"/>
<h1><util:valueof param="myHeadline" /></h1>

If an id is optional and is not specified, then the result returned by the tag is printed (that is, replaces
the tag in the final output).

name Attributes

The name of a bean that is to be used by the tag. In the following example, the switch tag will contain
case tags that test the value of the article bean's articleTypeName property.

<util:switch name="article" property="articleTypeName">
...
</util:switch>

property Attributes

The name of a property (of the bean identified by the name attribute) that is to be used by the tag. If
not specified, the bean identified by the name attribute itself will be used as the value. See above for an
example.

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 73

9 What Next?

This guide has hopefully provided you with enough information for you to be able to set up a working
environment for yourself and write the templates for a simple Escenic publication. There is, however,
plenty more to learn, and this section contains a list of resources for further reading.

9.1 Escenic Resources

Reference Material

Escenic Content Engine Bean Reference

Escenic Content Engine Resource Reference

Escenic Content Engine Syndication Reference

Escenic Tag Library Reference

Other Developer Guides

Escenic Content Engine Advanced Developer Guide

Escenic Content Engine Integration Guide

Escenic Content Studio Plug-in Guide

System Administration

Escenic Content Engine Installation Guide

Escenic Content Engine Publication Administrator Guide

Escenic Content Engine Server Administration Guide

User Guides

Escenic Content Studio User Guide

9.2 Other Resources
Servlets

http://java.sun.com/products/servlet/docs.html

JavaServer Pages
http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html

JavaBeans
https://docs.oracle.com/javase/tutorial/javabeans/quick/index.html

http://docs.escenic.com/ece-bean-ref/5.7/
http://docs.escenic.com/ece-resource-ref/5.7/
http://docs.escenic.com/ece-syndication-ref/5.7/
http://docs.escenic.com/ece-taglib-ref/5.7/
http://docs.escenic.com/ece-advanced-temp-dev-guide/5.7/
http://docs.escenic.com/ece-integration-guide/5.7/
http://docs.escenic.com/ece-cs-plugin-guide/5.7/
http://docs.escenic.com/ece-install-guide/5.7/
http://docs.escenic.com/ece-pub-admin-guide/5.7/index.html
http://docs.escenic.com/ece-server-admin-guide/5.7/index.html
http://docs.escenic.com/ece-content-studio-guide/5.7/
http://java.sun.com/products/servlet/docs.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html
https://docs.oracle.com/javase/tutorial/javabeans/quick/index.html

Escenic Content Engine Template Developer Guide

Copyright © 2004-2018 Escenic AS Page 74

JavaServer Pages Standard Tag Library
http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html

JSP Expression Language
http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html

Servlet filters
http://java.sun.com/products/servlet/Filters.html

http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html
http://www.oracle.com/technology/sample_code/tutorials/jsp20/simpleel.html
http://java.sun.com/products/servlet/Filters.html

