
Escenic Widget Framework

User Guide
3.4.1.173597

Table of Contents

1 Introduction.. 4

1.1 What is The Widget Framework?...4

1.1.1 About Templates... 4

1.1.2 About Widgets... 6

1.2 How Do I Start?..6

2 Templates.. 7

2.1 Creating a Template...7

2.2 Naming Templates..9

2.2.1 Multiple Template Roots (Content Profiles).. 11

2.3 Organizing Templates...11

2.4 Templates, Section Pages and Content Pages... 12

2.5 Inheritance in the Widget Framework.. 14

2.5.1 Section Template Inheritance..15

2.5.2 Content Item (Article) Template Inheritance... 17

2.5.3 Tag Template Inheritance... 18

2.5.4 Custom Templates.. 20

2.6 Master Templates...20

2.7 Lazy Loading.. 21

3 Widgets.. 23

3.1 About Widgets.. 23

3.1.1 Content-based Widgets... 23

3.1.2 Content-free Widgets...23

3.1.3 Data Sources...23

3.2 Widgets and Widget Types.. 25

3.3 Creating a Widget...25

3.4 Configuring a Widget..26

3.4.1 General Properties.. 27

3.4.2 Default Properties..27

3.4.3 Advanced Properties... 27

3.4.4 Configuring Teaser Widget Data Sources...28

3.4.5 Configuring View Pickers and Teaser Views.. 29

3.5 Adding a Widget to a Template... 29

4 Themes.. 31

4.1 Changing Themes and Variants...31

5 Access Control...32

6 How To.. 33

6.1 Create a Section...33

6.2 Create a Template..33

6.3 Edit a Template.. 34

6.4 Preview a Template..34

6.5 Enable Master Template Switching..34

6.6 Add Search Functionality... 36

6.6.1 Creating a Results Page... 36

6.6.2 Adding a Search box to Pages... 37

6.7 Load Content In-line... 38

6.8 Enable/Disable Profiling..38

6.9 Display "Mega-Dropdown" Using Menu Pane Group...38

6.10 Use a Context Section Group.. 39

6.11 Enable Editorial Teaser Layout Control... 39

6.11.1 Editorial Control of View Picker Teasers...40

6.11.2 Editorial Control of Teaser Grid Teasers.. 40

6.11.3 Defining Override CSS Styles... 40

6.12 Configure Video Advertising Services.. 41

6.12.1 Defining a Service... 41

7 Editorial Layout Control... 43

7.1 Using Curated View Groups...43

7.1.1 Curated View Options... 43

7.2 Using Grid Groups..44

7.2.1 Grid Options.. 45

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 4

1 Introduction

The Escenic Widget Framework is an add-on product for the Escenic Content Engine that greatly
simplifies the process of designing publications. Without the Widget Framework, publication design
requires considerable HTML and JSP programming skills. With the Widget Framework, publications
can be designed using a drag-and-drop interface in Escenic Content Studio (the Escenic content
editor).

This manual is a user guide for:

• Publication designers who want to use the Widget Framework to design Escenic publications

• Editors and/or journalists who want to be able to "tweak" the layout of Widget Framework
publications

The prerequisites for using this manual are:

• You have the general design skills needed to work with publication layouts

• You are familiar with the general structure of Escenic publications

• You already know how to use Content Studio for editorial purposes

• You already have some experience of using Web Studio for section management purposes

1.1 What is The Widget Framework?
The Escenic Content Engine is a template-based publishing system, in which content production
is completely separated from layout design. This allows writers and editors to concentrate on the
production of content without needing to think about layout, and allows designers to ensure that
a publication has a consistent, well-designed appearance. Web pages are generated by combining
content items written and edited using Content Studio with templates written in HTML/JSP.

This approach works well, but it has some disadvantages:

• It requires designers to have HTML and JSP programming skills in addition to design skills

• It makes publication design a relatively slow and error-prone process, with the result that:

• Publications cannot easily be redesigned for special occasions

• The production of ad-hoc extra publications is difficult and in general, too costly

The Widget Framework solves this problem by enabling publication designers to assemble templates
from a library of predefined template fragments called widgets. In this way it is possible to build a
complete set of templates for a publication in a fraction of the time it would take to write, test and
debug templates by hand.

1.1.1 About Templates

A Widget Framework template is represented in Content Studio by a special kind of section called a
template section. It appears in the Content Studio section tree along with all the other sections. The
factors that differentiate a template section from an ordinary section are:

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 5

• Its name: a template always has a name starting with config.

• Its section page content: instead of actual content items (teasers and so on), a template's section
page contains widgets.

• The section page's Page options property, which is set to config.

The following illustration shows a publication section hierarchy. Note that the template sections all
have names starting with config, and that they are organized in their own tree:

Here is a template's section page as it appears in a Content Studio section page editor:

All the "content items" on this section page are in fact widgets.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 6

1.1.2 About Widgets

A widget is represented in Content Studio by a special kind of content item. If the Widget Framework
is installed on your site, and you click on File > New in Content Studio, then the displayed sub-menu
should contain a Widgets option (or possibly several widget options such as Core widgets and
Community widgets) . Selecting one of these options displays a further sub-menu containing a list
of available widget types:

The Widget Framework includes a set of standard widgets for creating page components such as:

• breadcrumbs

• menus

• search tools

• teasers

• stories

making it possible to meet most requirements "out of the box". If you have special needs that are not
satisfied by the widgets in the standard, it is possible to write custom widgets of your own (if you have
the necessary HTML and JSP programming skills). This manual does not, however, cover the design
and creation of custom widgets.

The standard widgets do, however, really satisfy a very wide range of requirements, since they are
all configurable: that is, they have properties which you can use to control their appearance and
behavior. This ensures that using the Widget Framework does not impose a generic, pre-packaged look
and feel on publications - there is still plenty of scope for your creativity.

1.2 How Do I Start?
Now that you have a basic idea of what the Widget Framework is intended to do and how it works, it's
probably best to get started. If the Widget Framework has been installed at your site, then all you need
to do is start up Content Studio and log in to a publication. The next two chapters will help you to get
started editing templates and widgets.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 7

2 Templates

In the widget framework, a template is a special kind of section. A template differs from an ordinary
section in the following ways:

• It is named according to a special convention that identifies it as a template rather than an ordinary
section.

• Instead of containing actual content (teasers and so on), it contains widgets. The widgets define
how content is to be presented on section pages and on content pages.

This chapter will tell you how to create and edit templates. It also contains explanations of how
templates work, and how they are related to ordinary sections and content pages. It is probably a good
idea to read through the whole section and then to try following the instructions in section 2.1.

2.1 Creating a Template
A template is basically created in the same way as an ordinary section, but it must be named correctly
and should be created in the config subtree. To create a template:

1. Open the Content Studio Sections panel and expand the section tree to display the existing
templates in the config tree:

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 8

2. Select the template you want to be the parent of your new template and right click on it to display
its context menu:

3. Select Create sub section... from the displayed menu. The new section that will be your
template is opened in an editor:

4. Enter values for the following properties:

Section name
You can set the section name to anything you like, but you are recommended to set it to the
same value as Unique section name.

Unique section name
The section's unique name must be set according a special naming convention. For details,
see section 2.2.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 9

Relative directory URI
It doesn't really matter what you enter here, but by convention you repeat the Unique
section name, replacing all "." characters with "_".

All the other properties can be left empty or with their default values.

5. Click on Save & close.

6. Double-click on your new template in the section to open its section page for editing:

7. Add the groups and widgets you require to the template.

8. Click on the Save button at the bottom of the section editor (or the Publish button if it is ready
to use).

2.2 Naming Templates
How you name templates is very important, since it determines how they are used. The following
names must be used:

config
config is the container for all templates. It is itself a template, however, and should not contain
any layout objects (groups and widgets). If you do put any layout widgets in it, they will not be
used.

config.default
The default template is used for all pages: section pages, article pages and tag pages. It is, as
its name suggest, the root of the default template tree. You can create other template trees for
special purposes (see section 2.2.1).

config.default.section
The config.default.section template is is used for all section pages. It is a child of the
config.default template.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 10

config.default.article
The config.default.article template is used for all content pages. It is a child of the
config.default template.

config.default.tag
The config.default.tag template is used for all tag pages. It is a child of the
config.default template.

config.default.section.section-name
There can be many such templates, where section-name is the unique name of a particular
section in the publication. The template will then be used for this particular section. It is a
descendant (child, grandchild etc.) of the config.default.section template.

config.default.article.type.type-name
There can be many such templates, where type-name is the name of one of the publication's
content types. The template will then be used for content items of this particular type. It is a
child of the config.default.article template.

config.default.article.section-name
There can be many such templates, where section-name is the unique name of a particular
section in the publication. The template will then be used for content items belonging to this
particular section. It is a child of the config.default.article template.

config.default.article.section-name.type.type-name
There can be many such templates, where section-name is the unique name of a particular
section in the publication and type-name is the name of one of the publication's content types.
The template will then be used for type-name content items belonging to the section called
section-name. It is a child of the config.default.article template.

config.default.tag.scheme.tag-structure-name
There can be many such templates, where tag-structure-name is the name of a particular tag
structure used in the publication - for example, config.default.tag.scheme.places. The
template will then be used for tag pages belonging to the specified tag structure. It is a child of
the config.default.tag template.

config.default.tag.tag-structure-name.tag-term
There can be many such templates, where tag-structure-name is the name of a particular
tag structure used in the publication, and tag-term is the term of a tag in that structure - for
example, config.default.tag.places.bangladesh. The template will then be used for
that specific tag's tag page. It is a child of the config.default.tag template.

config.default.master.master-template-name
There can be many such templates, each defining a master template. A master template
contains a template fragment that can be re-used in other templates. It is a child of the
config.default template. You can give a master template any name you choose. For more
detailed information about master templates, see section 2.6.

This means that:

• The layout of a section called news will be based on the layouts in the templates config,
config.default.section and config.default.section.news (if it exists).

• The layout of a content item belonging to the content type story will be based on
the layouts in the templates config.default, config.default.article and
config.default.article.type.story (if it exists).

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 11

• If there is a template called config.default.article.news.type.story, then
any story content items belonging to the news section will use this template instead of
config.default.article.type.story.

• The layout of a tag page for the countries tag bangladesh will be based
on the layouts in the templates config.default, config.default.tag,
config.default.tag.scheme.countries (if it exists) and
config.default.tag.countries.bangladesh (if it exists).

2.2.1 Multiple Template Roots (Content Profiles)

The Widget Framework is delivered with a single template root or content profile called default.
It is, however, possible to create additional template roots, each with their own hierarchy of templates.
In this way you can define different layouts for different purposes. You might, for example, add a
newsletter template root, with a hierarchy of templates designed to provide a newsletter layout, or
an inline root containing templates for in-line loading (see section 2.2.1.1).

For information about how to configure the Widget Framework to support and make use of multiple
template roots, see Content Profiles in the Escenic Widget Framework Developer Guide.

2.2.1.1 The Inline Template Root

The template root name inline is reserved for a special purpose. It can be used to provide a special
set of article templates that are used for in-line loading of content. In-line loading means that when
the user clicks on a teaser link on a section page, the content item is loaded directly into the current
page instead of being displayed on a new page.

This on-line loading behavior can be configured in the Link settings of Teaser and Teaser view
widgets. When a content item is loaded in this way, its layout is determined by the content of the
appropriate config.inline.article template rather than a config.default.article
template.

Inline templates are only ever selected for content items, so there is no point including section
templates under the inline template root.

Inline templates are selected in exactly the same way as default templates. If, for example you want
a special inline template to be used for your Story content items, then you can achieve this by
defining the following inline template hierarchy:

config
 config.inline
 config.inline.article
 config.inline.article.type.story

2.3 Organizing Templates
Template sections are organized in a hierarchy under the config section. The config section itself
is not a template. The config.default template is a child of the config section and is the root
of the default template inheritance tree. Beneath the config.default template are the standard
templates config.default.section, config.default.article, config.default.tag and
config.default.master:

http://docs.escenic.com/widget-dev-guide/3.4/content_profile.html

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 12

config
 config.default
 config.default.section
 config.default.article
 config.default.tag
 config.default.master

This part of the template hierarchy is fixed. Below this point, the templates and their hierarchical
structure are user-defined. The hierarchical structure is very important, since it governs how the
layouts in templates are combined by inheritance. For more about the details of how template
inheritance works, see section 2.5.

2.4 Templates, Section Pages and Content Pages
A template defines the graphical layout of a set of publication pages. That layout is stored in the
template section's active page. Its top-level structure consists of a set of areas representing the
publication's overall graphical structure. The default set of areas used in the demo publication
delivered with the Widget Framework consists of the following areas: Outer, Header, Top, Main,
Aside, Bottom and Footer. It also has a special area called Meta, which is used to hold "invisible"
widgets."Invisible" widgets affect how pages work in some way, but do not occupy any physical space
on the page.

The exact physical position, shape and size of these areas is configurable - they are entirely determined
by CSS and may be device-dependent - but they will usually look something like this:

Header

Meta

Main Aside

Top

Bot tom

Footer

Each of these areas may have an internal structure of groups and areas. The Main area of a section, for
example, might have a Top Stories group and a Featured Stories group, each holding content
items whose teasers are to be placed in the main area of the page.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 13

The physical shape, position and size of groups and areas are not shown when editing templates in
Content Studio:

The names of the groups and areas created within each top-level area, do however, usually describe
some of their physical characteristics (Two column and Three column groups, for example).

The section pages on which journalists and editors desk their stories in Content Studio have a very
different structure from the template pages on which they are based. A typical section page has only
one top-level area called ContentArea, which is subdivided into logical groups that have no direct

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 14

relationship with physical page layout. These groups have names like Top stories, Featured
stories, Main, Carousel and so on:

There is, in other words, no direct correspondence between the groups on a section page and the
groups in the templates that govern its layout. In order for a content item that has been dragged into a
group on a section page to actually appear on the published page, it must be explicitly selected by one
of the widgets placed on the template.

For more information about this, and about widgets in general, see chapter 3.

2.5 Inheritance in the Widget Framework
As described above, all of a publication's templates have the same top-level structure: Meta,
Outer, Header, Top, Main, Aside, Bottom and Footer, for example. If a template
(config.default.section.news, for example) has widgets in all of these sections, then the
news section of the publication will take all of its layout from this template. If, however, only
the Aside area of the template contains widgets, then the Widget Framework will look in the
config.default.section template to get the layout for the Meta, Outer, Header, Top, Main,
Bottom and Footer areas. If config.default.section is not complete either (if, for example,
it's Outer, Header and Footer areas are empty) then the Widget Framework will look in the
config.default template for the missing information.

This inheritance mechanism makes it very easy to create a standardized layout for a whole publication,
and only create specialized layouts where you actually need them. A typical approach is to define
a standard layout for the Header and Footer areas in the config.default template, and
then define standard layouts for the remaining areas in the config.default.section and
config.default.article templates. If your publication has a very standardized layout, then this

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 15

may be sufficient. If, however, some of your section pages have significantly different layouts, then
you can achieve that by creating config.default.section.name templates for those particular
sections, and overriding just those areas that are different from the standard layout. Similarly you can,
if necessary, create config.default.article.type templates for any content types that require
specialized layouts.

The Sports section in the following illustration takes its Header and Footer layouts from
the config.default template, and its Top, Main, Aside and Bottom layouts from the
config.default.section layout. The News section, however takes its Aside layout
from the config.default.section.news template, which overrides the Aside layout in
config.default.section:

config.default

Header

Top

Aside

Footer

config.default .sect ion

Header

Top

Aside

Footer

Sports sect ion News sect ion

config.default .sect ion.news

Header

Top

Aside

Footer

Main

Aside

Main

Aside

Main

Aside

Aside

Footer

Aside

Footer

Aside

Footer

Bot tom

Footer

Bot tom

Footer

Bot tom

Footer

The following sections describe the specific inheritance mechanisms used for different types of page.

2.5.1 Section Template Inheritance

There are two different section template inheritance mechanisms, one governing the selection of
templates, and one governing the merging of the layout definitions in the sections. This section
describes how they are used to display a section called premierleague in a section hierarchy like
this:

ece_frontpage
 sports
 football
 premierleague

with a corresponding template hierarchy that looks like this:

config
 config.default.section
 config.default.section.sports
 config.default.section.football
 config.default.section.premierleague

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 16

Template selection

The Widget Framework first has to determine which template to select. In this case it is simple, since
the premierleague section has its own template (config.default.section.premierleague).
If there was no such template, however, then the Widget Framework would look for the template of its
parent section (football), and so on upwards. The Widget Framework bases its search on the section
hierarchy, looking for templates in the following order:

1. config.default.section.premierleague

2. config.default.section.football

3. config.default.section.sports

4. config.default.section

5. config.default

Note that even though ece_frontpage is the parent of premierleague, its template is not
included in the lookup sequence. ece_frontpage is a special case, and its template is never used
for any other section.

Area layout selection

Once it has found a template (in this case config.default.section.premierleague) the
Widget Framework then tries to assemble a complete template, containing a layout for each top-level
area. In this case it bases its search on the template hierarchy rather than the section hierarchy. If, for
example, config.default.section.premierleague only contains a layout for the Aside area,
then it will continue to search for the Meta, Outer, Header, Top, Main, Bottom and Footer areas
in the config.default.section.football template. It will search the templates in the following
order, stopping once it has a complete set of layouts.

1. config.default.section.premierleague

2. config.default.section.football

3. config.default.section.sports

4. config.default.section

5. config

With a flatter template hierarchy

The two search sequences described above are very similar because the template hierarchy closely
matches the section hierarchy. This need not be the case, however. If the template hierarchy looked
more like this:

config
 config.default.section
 config.default.section.sports
 config.default.section.football
 config.default.section.premierleague

then the template search sequence would be the same, but the layout search sequence would be:

1. config.default.section.premierleague

2. config.default.section

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 17

3. config

With a missing template

If there was no premierleague template at all:

config
 config.default.section
 config.default.section.sports
 config.default.section.football

then the Widget Framework would start by using the template search sequence to select the football
section's template, config.default.section.football, and would then search for layouts in the
following sequence:

1. config.default.section.football

2. config.default.section

3. config

2.5.2 Content Item (Article) Template Inheritance

Content item templates (or article templates) are all located under the config.default.article
template. You can create:

• Specialized templates for specific content item types (for example
config.default.article.type.story and config.default.article.type.picture)

• Specialized templates for content items belonging to specific sections (for example
config.default.article.premierleague or config.default.article.football)

• Specialized templates for specific content item types belonging to specific sections
(for example config.default.article.premierleague.type.story or
config.default.article.premierleague.type.picture)

Below is a description of how the template and area layouts are selected for a story content item in
the premierleague section, assuming a section hierarchy like this:

ece_frontpage
 sports
 football
 premierleague

Template selection

To find the correct template, the Widget Framework first looks for an article template of the correct
type for the correct section. If there is no such template, then it looks for an article template for the
correct section. If it still doesn't find a template then it repeats these two steps for the parent section,
(football), and so on up the section hierarchy:

1. config.default.article.premierleague.type.story

2. config.default.article.premierleague

3. config.default.article.football.type.story

4. config.default.article.football

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 18

5. config.default.article.sports.type.story

6. config.default.article.sports

7. config.default.article.ece_frontpage.type.story

8. config.default.article.ece_frontpage

9. config.default.article.type.story

10. config.default.article

11. config.default

Area layout selection

This section describes the Widget Framework's default area layout selection mechanism, which
is based on the template hierarchy. In earlier versions of the Widget Framework, however, area
layout selection was based on the template naming convention. You can force the current version
of the Widget Framework to use this old area layout selection mechanism by setting the property
wf.conventionalInheritance to true in your publication feature resource.

The Widget Framework assembles content item layouts in the same way as section page layouts. If, for
example, config.default.article.premierleague.type.story only contains a layout for
the Aside area, then it will continue to search for the Meta, Outer, Header, Top, Main, Bottom
and Footer areas in the config.default.article.premierleague template.

If template hierarchy is like this:

config.default
 config.default.article
 config.default.article.type.story
 config.default.article.type.picture
 config.default.article.premierleague
 config.default.article.premierleague.type.story

It will search the templates in the following order:

1. config.default.article.premierleague.type.story

2. config.default.article.premierleague

3. config.default.article

4. config.default

Section template hierarchy variations

Section template hierarchy variations such as a flatter structure or missing templates are handled in
exactly the same way as for section templates (see section 2.5.1).

2.5.3 Tag Template Inheritance

Tag pages are automatically generated pages created to display links and content related to tags.
When a user clicks on a tag keyword link, the corresponding tag page is displayed. The tag page usually
contains a brief article about or definition of the subject of the tag, followed by teasers and links
leading to tagged content items. The layout of these tag pages can be defined using tag page templates.

Tag page templates are all located under the config.default.tag template. You can create:

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 19

• Specialized templates for specific tag structures (for example
config.default.tag.scheme.places and config.default.tag.scheme.sports)

• Specialized templates for specific tags (for example
config.default.tag.places.bangladesh or config.default.tag.sports.football)

Below is a description of how the template and area layouts are selected for a dhaka tag page,
assuming a tag structure like this:

places (Tag structure)
 asia
 bangladesh
 dhaka

Template selection

To find the correct template, the Widget Framework first looks for a tag template for the specific
tag (dhaka). If there is no such template, then it looks to see if the parent tag (bangladesh) has
a template, and so on up the tag hierarchy. It will then check to see if there is a template for the tag
structure (places), and if not it will continue up the template hierarchy to the root:

1. config.default.tag.places.dhaka

2. config.default.tag.places.bangladesh

3. config.default.tag.places.asia

4. config.default.tag.scheme.places

5. config.default.tag

6. config.default

Area layout selection

Just like in case of section and article, area layout selection for tag templates follows the default
area layout selection mechanism, which is based on the template hierarchy.

The Widget Framework assembles tag page layouts in the same way as section page and content item
layouts. If, for example, config.default.tag.places.dhaka only contains a layout for the
Aside area, then it will continue to search for the Meta, Outer, Header, Top, Main, Bottom and
Footer areas in the config.default.tag.places.bangladesh template.

For example, if template hierarchy is like this:

config.default
 config.default.tag
 config.default.tag.scheme.people
 config.default.tag.scheme.foods
 config.default.tag.scheme.places
 config.default.tag.places.asia
 config.default.tag.places.bangladesh
 config.default.tag.places.dhaka

then for the dhaka tag, it will search the templates for area layouts in the following order:

1. config.default.tag.places.dhaka

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 20

2. config.default.tag.places.bangladesh

3. config.default.tag.places.asia

4. config.default.tag.scheme.places

5. config.default.tag

6. config.default

2.5.4 Custom Templates

Editors and journalists can override the template selection process for either a section page or a Story
content item by specifying a custom template. To do this the Content Studio user simply enter the
name of the required custom template in the section page's or Story's Custom template option.

In the case of a section page the Custom template option can be displayed by clicking on the section
page's Page Options button. For a Story content item the Custom template option is displayed on
the Layout tab. In both cases, the effect of specifying a custom template is that the custom template is
added to the start of the normal template search sequence. So if, for example, the name of a template
that does not exist is specified in the Custom template field, then the normal template will be used
instead.

Story Layout tabs actually contain two custom template fields. As well as the Custom template field
there is a Template variant field. This field offers a less flexible customization mechanism. It can be
set to one of 3 predefined values (Style 1, Style 2 and Style 3) that correspond to three content-type
specific templates called style1, style2 and style3. In other words, if the user selected Style 1,
then the first template looked for in the template search sequence described in section 2.5.2 would be
config.default.article.premierleague.type.story.style1.

Should the user specify a value in both the Template variant and Custom template fields, then
the value specified in Custom template takes precedence.

2.6 Master Templates
The inheritance mechanism described in section 2.5 provides a useful means of re-using groups
of widgets. It only works, however, for whole areas. You can, for example, re-use the whole of a
template's Main area by creating a child template with an empty Main area. But what if you only want
to re-use one particular group of widgets, not the whole area? What if you want to re-use a group of
widgets from a template other than the parent of the template you are working on? Master templates
provide a more flexible means of re-using groups of widgets that solves these problems.

A master template has a name of the form:

config.default.master.master-template-name

and contains a set of templates that you want to be able to re-use. You might, for example, create a
menu that you want to re-use in many of your templates.

Once you have created a master template containing the widgets you want (let's call it
config.default.master.menu), you can use it by creating a master widget and placing it in any
section and/or article templates you like. A master widget has two required properties:

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 21

Title
The name of the widget instance you have created. You might set this to Menu.

Master section unique name
The name of the master template this widget is to reference. You would set this to
config.default.master.menu in this case.

Set these properties, save the widget, and then drag it into the templates where you want to use the
widget group defined in the master template.

For a description of how you can enable editorial staff to quickly switch between master templates, see
section 6.5.

2.7 Lazy Loading
The Widget Framework uses Bootstrap-based CSS to enable responsive web sites that adjust page
layout to fit the available screen space. A page displayed on a mobile phone (or in a small window on a
PC) is formatted differently to the same page displayed full-screen on a PC.

This mechanism provides a good basis for making web sites that perform well on a wide range of
devices, but it is not sufficient in all cases. With the Widget Framework's lazy loading feature you can
also prevent parts of a web page from loading on certain devices.

You can individually configure the loading behavior of every part of a template (areas, groups and the
widgets placed in the template). By default all components are loaded in the normal way but you can
specify that certain components should only be loaded if the browser window is a certain size.

The loading behavior is controlled by options displayed in the Content Studio template editor:

When you select an area, group or widget, the options displayed on the right include the following lazy
loading options:

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 22

Lazy loading
Select the required value:

Enabled
This page component (area, group or widget) is not loaded if the browser window matches
a selected "skip" size.

Disabled (default)
This page component (area, group or widget) is always loaded.

Skip on device
Check the window sizes for which loading is to be skipped.

Large
If checked, and Lazy loading is Enabled, then this component will not be loaded into
large browser windows.

Medium
If checked, and Lazy loading is Enabled, then this component will not be loaded into
medium browser windows.

Small
If checked, and Lazy loading is Enabled, then this component will not be loaded into
small browser windows.

You can determine the meaning of Large, Medium and Small yourself by setting section
parameters in the root section of your publication. The parameters (and their default settings)
are:

• wf.clienttype.large=(min-width: 992px)

• wf.clienttype.small=(max-width: 767px)

• wf.clienttype.medium=(min-width: 768px) and (max-width: 991px)

Fragment token
An automatically generated ID is written to this field the first time a template is saved. You
should not modify this value.

Widget Framework's lazy loading mechanism is SEO-friendly. The fragments that are lazily loaded are
indexed by search engines. In order to make them indexable by search engines, Google's Ajax Crawling
Scheme is used.

Nested lazy loading is not supported. If you enable lazy loading for a group or area, then the loading
rule you specify is applied to that component and everything it contains. You cannot switch off lazy
loading for one of its child components, or apply a different loading rule. Any lazy loading changes
you make to child components will be ignored.

https://developers.google.com/webmasters/ajax-crawling/docs/specification
https://developers.google.com/webmasters/ajax-crawling/docs/specification

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 23

3 Widgets

A widget is a template fragment: a bundle of HTML, JSP and CSS code that performs a particular
function such as displaying a content item or dateline on a publication page. As a publication designer,
however, you do not need to think about this internal structure: you will see widgets as special content
items that you can work with in Content Studio in much the same way as ordinary content items.
You can create, delete and modify them in much the same way as ordinary content items. The main
difference is that widgets are placed in templates (the special section pages described in chapter 2)
rather than in ordinary section pages.

3.1 About Widgets
Widgets fall into the following main categories:

• Content-based widgets

• Content-free widgets

3.1.1 Content-based Widgets

A content-based widget is a widget that renders all or part of one or more content items. There are two
types of content-based widget:

• Widgets that render the current content item and are therefore used only in content templates and
tag templates (in which case the tag's topic content item is the current content item). The Content
Body widget is an example of this kind of widget.

• Widgets that can render information about many widgets and are therefore primarily used in
section templates. Such widgets may also be used in content templates (to render information
about a content item's related items, for example). The only widgets of this kind at present are the
Teaser widget and the related Teaser View widget.

3.1.2 Content-free Widgets

A content-free widget does not require access to any particular content items, and can be used in both
content templates and section templates. The Menu widget, Code widget and Breadcrumb widget are
all examples of this kind of widget.

3.1.3 Data Sources

The Teaser widget performs two functions:

• It retrieves a set of content items from the Content Engine.

• It renders selected fields and information about each of the content items in the set.

The widget's data retrieval function is performed by a component called a Data Source. A Data Source
is actually an independent, separate component and can be used in three ways:

• Embedded in a widget

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 24

• Defined independently and then used by one or more "client" widgets

• Desked in a group on the section page, where it behaves like an automated list

The Data Source component is very powerful and flexible. It allows you to define multiple queries that
can select content items using a variety of different methods. You can, for example:

• Select the content items desked in a specified group on the current section page

• Select the current content item's related content items

• Select content items that are tagged with the same tags as the current content item

• Select content items based on data returned by the Escenic Analysis Engine (the most read content
items, for example)

• Select content items using a free text search

The results returned by the queries you define are merged into a single collection that you can filter
and sort in various ways to produce the final list of content items that will be displayed by a widget or
widgets (or directly on a section page in the case of a desked data source).

3.1.3.1 Desked Data Sources

Although data sources are primarily intended to be used as the "back end" of widgets, they can also be
used independently by editorial staff as a means of creating automated lists. If a data source is desked
directly on an ordinary section page, then it behaves something like a list: on the published page, it is
replaced by the content items that it retrieves.

Data source nesting

A data source with a "by section group" query selects content items from a section page group, and that
section page group may itself contain a data source. This kind of data source nesting is allowed, but
limited in order to prevent complex chains of nested data sources and/or loops. The limit can be set
by configuring the Widget Framework's /com/escenic/framework/datasource/fetcher/
DeskedItemFetcher component. This component has a maxDatasourceNestingLevel property
that limits nesting as follows:

maxDatasourceNestingLevelMeaning

0 Desked data sources are ignored

1 Desked data sources are used, but any further nesting is ignored

2 Desked data sources are used. If a desked data source selects from
a section page group containing another data source, then that data
will be used, but any further nesting is ignored

n... And so on ...

By default, maxDatasourceNestingLevel is set to 1.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 25

3.2 Widgets and Widget Types
So far in this manual, we have often used the word widget to mean widget type (it's difficult to avoid
doing so), but it is important to clearly understand the difference between the concepts widget and
widget type. If you click on File > New > (Core/Community) Widgets in Content Studio, then
what you see in the displayed menu is a list of widget types. If you click on one of the listed types -
let's say you click on Menu Widget - then this results in the creation of an actual widget, an instance
of the widget type Menu. One of the things you are required to do when you create any kind of widget,
is to name the instance you have created by setting it's Name property. The following illustration shows
the property list for a newly-created menu widget: the Title label is displayed in red, indicating that
this property is required.

Naming the widgets you create is important, because you can create many widgets of the same type.
You might, for example, call your Menu widget Header Menu, and place it in the Header area. But
if you also want your publication to include a footer menu, then you can create another Menu widget
called Footer Menu and set it up accordingly. A typical content template will usually contain several
instances of the Content Field widget type, each set up to display a different content item field: a
Title widget displaying the title field and a Subtitle widget displaying the subtitle field, for
example.

3.3 Creating a Widget
A widget is special kind of content item, so you can create one in the same way as any other content
item:

1. Select File > New > Widgets.

2. the type of widget you want to create - Teaser Widget for example.

3. Configure the widget by entering values in its property fields.

4. Click on Save or Publish.

All widgets have at least one mandatory property field (displayed in red) that you must fill in: Title,
the name that will be used to identify the widget. Some widget types may have other mandatory
properties.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 26

Widgets may have many other property fields, but usually most of them will have default values. The
fields are divided into groups and displayed on separate tabs. Mandatory property fields always appear
on the default General tab. For more information about property fields and how they are organized,
see section 3.4.

In addition to the General tab, most widgets have an Default tab and an Advanced tab. Some
widgets have no additional tabs, others have many.

3.4 Configuring a Widget
Configuring a widget is a simple matter of opening it in Content Studio and setting its properties.
There are very few properties that must be set in order for a widget to work, and most properties
have sensible defaults, so configuring widgets is in general not particularly difficult. Moreover, many
properties are common to most or all widget types, so once you have learned what these common
properties control, learning to use new widget types does not require much additional effort.

Widget properties are divided into groups and displayed on separate tabs. The following three tabs are
common to almost all widget types:

• General

• Default

• Advanced

The properties most commonly displayed on these tabs are described in the following sections. Some
widget types have only these three tabs. Other widget types have additional tabs containing widget-
specific properties that are for the most part not discussed in this manual. For information about

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 27

widget-specific properties, see the widget descriptions in the Escenic Widget Framework Core Widgets
Reference.

3.4.1 General Properties

A General properties tab contains some or all of the following property fields:

Title
This property is always mandatory. Use it to set the name of the widget.

View
Many widgets have a View property. It is intended to allow switching between different widget
views. In the current version, however, it has only one value: Default.

3.4.2 Default Properties

Most widgets have a Default tab, and it usually contains the widget's most commonly-used settings.

3.4.3 Advanced Properties

An Advanced properties tab usually contains the following property fields:

Widget wrapper
The HTML elements that make up a widget are always wrapped in a single HTML element. This
property lets you choose what element to use for this purpose.

Style Id
This property lets you set the widget wrapper element's id attribute, so it can easily be selected
in CSS files. This attribute is mainly of interest to theme designers.

Style Class
This property lets you set the widget wrapper element's class attribute, so it can easily be
selected in CSS files. This attribute is mainly of interest to theme designers.

Enable Edge Side Includes (ESI)
Check this property to enable Edge Side Includes (ESI) processing of this widget. ESI is
a widely-used standard for caching of web pages (see http://www.edge-delivery.org/). If you
check this option, then the HTML code representing the widget is wrapped in ESI mark-up
specifying that it may be cached by ESI servers. You can specify that some widgets are cached,
while others are not, and you can specify how long different widgets should be cached for. You
may, for example, decide that a widget whose content changes infrequently can be cached for a
long time. Other widgets with more volatile content can be set up to expire more frequently, or
not cached at all.

Do not enable this option unless:

• You know what ESI is and understand how to use it

• You know that the generated output will be processed by an ESI server

Maximum age (in seconds)
If you have checked Enable Edge Side Includes (ESI), then you must use this property to
specify how long the widget may be cached by the ESI server. The ESI server will only use the
cached version of the widget until this limit is reached.

http://docs.escenic.com/widget-core-reference/3.4/
http://docs.escenic.com/widget-core-reference/3.4/
http://www.edge-delivery.org/

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 28

Set cache control directive
If you have checked Enable Edge Side Includes (ESI), then this property controls the value
of a cache control directive included in the header of the response generated when a caching
server requests a new version of this widget. It can be set to one of the following values:

public (the default)
The widget has public content that is valid for all users. The cached copy can therefore be
used for all page requests.

private
The widget has user-specific content that is not valid for all users. It should therefore be
saved in a private user-specific cache and only used for responding to requests from that
user.

no-cache
The widget should not be cached at all.

The Advanced properties tab of some widget types may also contain other widget-specific properties.

3.4.4 Configuring Teaser Widget Data Sources

A Teaser widget renders selected fields from a set of selected content items. The content items are
selected by a component called a Data Source. A Teaser widget therefore has a Data Source tab that
you can use to configure the Data Source. There are two different types of Data Source:

External
An external Data Source is independently-defined: you create it in the same way as a widget.
You can then use it in a Teaser widget by dropping it on the widget's External Data Source
field as a related content item.

Embedded
An embedded Data Source is embedded inside the Teaser widget. You configure it by editing the
Embedded Data Source definition form displayed on the Data Source tab.

A widget can only have one data source, so before you configure a Teaser widget, you first need to
decide what kind of Data Source to use. You should use an external Data Source if you want several
widgets to be able to share the same Data Source. Otherwise it is most convenient to have the Data
Source definition embedded in the widget that uses it. To select the Data Source type you must set the
Use field (which is the first field on the Data Source tab) to External Data Source or Embedded
Data Source.

If you select Embedded Data Source then you can configure the embedded Data Source using
the form displayed in the Embedded Data Source definition field. If you select External Data
Source then you need to create a Data Source, save it and then associate it with your Teaser widget by
dropping it on the widget's External Data Source field as a related content item.

To create an external Data Source, select File > New > Data Source and then configure it in the
same way as you would configure a widget. The Data Source component has a Definition field that
contains exactly the same Data Source configuration form as the Teaser Widget's Embedded Data
Source definition field. For a complete description of this form and how to use it, see Configuring a
Data Source.

http://docs.escenic.com/widget-core-reference/3.4/configuring_a_data_source.html
http://docs.escenic.com/widget-core-reference/3.4/configuring_a_data_source.html

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 29

3.4.5 Configuring View Pickers and Teaser Views

Using an external Data Source component allows you to decouple the Teaser widget's back-end data
retrieval function from its front-end presentation functionality. The Teaser View widget performs a
similar function with regard to the Teaser widget's front end. A Teaser View widget has all the same
presentation functionality as a Teaser widget, but no back-end functionality at all. It does not have an
embedded Data Source, nor any means of attaching an external Data Source. A Teaser View widget can
only be used in combination with a View Picker widget.

A View Picker widget can be regarded as a kind of switch that connects one Data Source to several
Teaser View widgets. Like a Teaser widget, a View Picker widget can be configured to use either an
embedded Data Source or an external Data Source. Unlike a Teaser widget, however, the View Picker
widget has no front-end presentation functionality. Instead, it has a Related view field on which you
can drop Teaser View widgets. You can then configure the Teaser View widgets to select content items
from the View Picker's Data Source. The Teaser View widgets can select content items based on two
criteria:

• Content type

• Position in the Data Source collection

The procedure for configuring these widgets is as follows:

1. Create and configure the Teaser View widgets you require. A Teaser View widget is identical to a
Teaser widget, except that it has no Data Source tab.

2. Save/Publish the Teaser Views. Note, however, that these widgets cannot be placed on a
template in the normal way.

3. Create and configure a View Picker widget. You can configure it with either an embedded Data
Source or an external Data Source in the same way as a Teaser widget.

4. Drop the Teaser View widgets you created on the View Picker's Related view field.

5. Select each dropped Teaser View widget in turn and edit its content item selection properties.
These properties are displayed in the Element properties panel on the right. Note that you
can only edit these properties here - you cannot edit them when editing the Teaser View widgets
themselves.

6. Save/Publish the View Picker widget.

7. Place the Teaser View widget in the required location in a template.

3.5 Adding a Widget to a Template
Since widgets are represented by content items in Content Studio, you can add a widget to a template
in exactly the same way as you would add a content item to an ordinary section:

1. Click on Sections on the left side of the window to display the Sections tab.

2. Locate the template you want to add a widget to in the section tree
(config.default.section, for example: this is the default template for all section pages).
Double-click on the section to open it.

3. Click on Search on the left side of the window to display the Search tab.

4. Clear the Date field and click on the Widgets link. All available widgets will then be listed in
the search results area. If you know the name of the widget you want, you can also enter a search

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 30

string in the Find field before clicking on the Widgets link in order to list only the widget you
are interested in.

5. Locate the widget you are interested in and drag it from the search results list to the required
location in the template you opened.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 31

4 Themes

The graphical appearance of Widget Framework publications can be controlled by selecting themes.
A theme is a package of CSS files, graphics files (button icons, and so on) and javascript files that
determine the appearance and behavior of the templates. A theme can also have variants. A variant
contains modifications to some aspects of a theme.

You can use themes and variants in whatever way you choose, but the general idea is that you can use
different themes for different publications that you want to have completely different appearances, and
use variants on those themes for minor variations within publications at the section level (so that the
Sports section looks different from the News section, for example).

The Widget Framework is supplied with one theme called default, which has an empty variant called
variant. It is possible to make themes and variants of your own (if you have the necessary CSS and
Javascript programming skills). This manual does not, however, cover the design and creation of
custom themes and variants.

Themes and variants can be set on a per-section basis, allowing you to give a different look-and-feel to
different parts of a publication. For a description of how to do this, see section 4.1.

4.1 Changing Themes and Variants
To change the theme or variant of a section you must have section editing rights for the sections
you want to change. You need to open the section for editing in Content Studio and set some section
parameters:

1. Open the Content Studio Sections panel and expand the section tree to display the section you
are interested in.

2. Select the section and right click on it to display its context menu.

3. Select Edit from the context menu.

4. Click on the Section parameters tab in the opened section editor.

You can now set the following section parameters:

theme.name=your-theme

to set the theme, or

theme.variant=your-variant

to set the variant

Section parameters are inherited, so when you change a section's theme or variant in this way, the
change also applies to all the section's sub-sections. The appearance of an entire publication can be
changed by setting the root section's theme.name parameter.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 32

5 Access Control

With the introduction of the Widget Framework, Content Studio becomes a tool not only for writers
and editors, but also for publication designers and layout experts. In some cases, the same people may
be responsible for both kinds of work, but in most organisations (especially in larger ones) these jobs
will be carried out by specialists.

Since the Widget Framework's templates are in fact sections, you can use the standard Content Engine
access control mechanisms to enforce this division of labour. All you need to do is create separate user
groups for editorial and design staff, and then assign them different section-level access rights. You
might, for example, assign the following access rights:

• Design staff: editor or journalist access to templates (the config section and its
subsections), reader access to content sections.

• Editorial staff: editor or journalist access to content sections, no access to templates.

You can, of course, specify access rights in more detail, creating sub-groups of designers with greater
or lesser access to different templates, and give some individuals specialised access rights.

For a detailed description of Content Engine access control and how to use it, see Editing Users and
Persons in the Escenic Content Engine Publication Administrator Guide.

http://docs.escenic.com/ece-pub-admin-guide/5.7/editing_users_and_persons.html
http://docs.escenic.com/ece-pub-admin-guide/5.7/editing_users_and_persons.html

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 33

6 How To...

This section contains some step-by-step descriptions of how to carry out specific tasks using the
Widget Framework. The first few examples are based on the following scenario:

• Your publication has an existing section called Sports, based on a template called
config.default.section.sports.

• You want to add a new section under the Sports section called Tennis.

• You want the Tennis section to have a slightly different layout to the other Sports sections, so
you need to create a new template for it.

In order to achieve these objectives you need to:

1. Create a new Tennis section (see section 6.1).

2. Create a template defining the layout for your new section (see section 6.2).

3. Edit the new template (see section 6.3).

When you have carried out these tasks, add some content to your Tennis section and view the results
in a browser. You should see that the Tennis section's layout is different from that of other Sports
sections.

6.1 Create a Section
To create a new Tennis section:

1. Start Content Studio and log in as a user with editor access to ordinary sections.

2. Create your new Tennis section as a subsection of the Sports section. For general information
on how to use Content Studio, see the Escenic Content Engine User Guide. Set the new section's
Unique section name to tennis.

6.2 Create a Template
To create a new template for your Tennis section:

1. Start Content Studio and log in as a user with editor access to templates.

2. Follow the general instructions in section 2.1 (steps 1 to 5). Create your new template as a
subsection of config.default.section.sports, and set its properties as follows:

Section name
config.default.section.tennis

Unique section name
config.default.section.tennis

Relative directory URI
config_default_section_tennis

http://docs.escenic.com/ece-content-studio-guide/5.7/

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 34

The last section of the template's Unique section name must exactly match the Unique
section name of the section it defines the layout for. If this is not the case, then the template will
not be found by the widget framework and will not be used.

6.3 Edit a Template
To edit your tennis template:

1. Start Content Studio and log in as a user with editor or journalist access to templates.

2. Find the new template (config.default.section.tennis) and open it.

3. You will see that the new template is empty: this means that it inherits all of its layout from its
parent, config.default.section.sports. Open config.default.section.sports,
copy the contents of its Main area, and paste them into the Main area of
config.default.section.tennis.

4. Now make a change to the widgets you have pasted into config.default.section.tennis:
simply delete one of the widgets, for example, or replace it with a different type of widget.

5. Click on Save or Publish to save your changes.

6.4 Preview a Template
You can preview a template you are working on in Content Studio in just the same way as editors can
preview content items and section pages. The main difference is that in order to preview a template,
you need to supply some content as well. Therefore, when you display a templates Preview tab, the
options panel on the right contains an additional Widget Framework section where you can specify
the content you want to use for preview purposes:

You can simply drop a content item or section page in the appropriate field, or select one you have
used earlier from the corresponding Recent field. You can change the selected content item or section
page to see what the template looks like with different content.

6.5 Enable Master Template Switching
Master template switching is a technique you can use to provide editorial staff with a very quick way
to switch between different layouts. A typical use case is "instant" reformatting of the front page when
a big story breaks. Under normal news conditions a "default" layout gives two or three top stories

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 35

broadly similar prominence. When a big story breaks, however, editorial staff want to switch to a
"breaking news" layout in which much greater prominence is given to the number one story, and less
to the other top stories.

Master template switching allows editorial staff to make this kind of change by simply changing a
section page option in Content Studio.

To set up master template switching:

1. Create the master templates you want to switch between (say
config.default.master.frontpage.default and
config.default.master.frontpage.breaking). These master templates should contain
sets of correctly configured widgets that you have tested in the location where you intend to use
them.

2. Add a template switching option to one of the groups on the required section page. To do this you
have to edit your publication's layout-group resource and add a structure something like this:

<group name="topStories">
 ...
 <ct:options>
 <ct:field name="masterconfig" type="enumeration">
 <ui:label>Select page layout</ui:label>
 <ui:description>Master configuration option for the group</ui:description>
 <ct:enumeration value="frontpage.default">
 <ui:label>Default</ui:label>
 </ct:enumeration>
 <ct:enumeration value="frontpage.breaking">
 <ui:label>Breaking news</ui:label>
 </ct:enumeration>
 <ui:value-if-unset>frontpage.default</ui:value-if-unset>
 </ct:field>
 </ct:options>
 ...
</group>

The important points about this option definition are:

• It must be called masterconfig.

• It should be an enumeration field with one enumeration element for each master template
that you want to switch between.

• The value attributes of the enumeration elements must be the names of the master
templates you have created, but without the config.default.master prefix.

See here in the Escenic Content Engine Template Developer Guide for information about
the layout-group resource and how to edit it.

3. Add a Master widget to the template used by the section page.

4. Set the following fields in the Master widget:

Title
Set to anything you like.

Master section unique name
Set this to the name of any one of your master templates (for example
config.default.master.frontpage.default). This is the template that will get
used if the Master widget is used on a section page that has no masterconfig option.

http://docs.escenic.com/ece-resource-ref/5.7/layout_group.html

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 36

Master group name
Set this to the name of the section page group to which you added the masterconfig
option (topStories in the example shown above) Make sure that you use the name of
the group (as specified in the layout-group resource) and not its label as displayed in
Content Studio. These may be the same, but are not necessarily so.

Make sure that all the changes you have made are published. You should now be able to switch
between the layouts you have defined by simply changing the value of the masterconfig option you
added to the section page and pressing Publish in Content Studio.

6.6 Add Search Functionality
To add search functionality to a typical publication you need to:

• Design and create a search results page

• Add a search box to every page

These tasks are described below.

6.6.1 Creating a Results Page

To create a results page:

1. Create a search results section as a child of the publication's home section. Set the section's
Section unique name property to search.

2. Create a template for the search results page as a child of the publication's
config.default.section template. The new template's Section unique name must be set
to config.default.section.search.

3. Create a Search Config widget and configure it according to your needs, then publish it.

4. Drag the Search Config widget into your search template's Meta area.

5. Create a Search Component widget, set Title to a name of your choice (Search Results, for
example).

6. On the General tab, set Component to Results List.

7. Publish the widget.

8. Drag the Search Results widget into your search template's Main area (probably inside a group
somewhere).

9. If you want other search components on your search page, create other kinds of Search
Component widgets (a result counter and a pager control, for example) and place them in your
search template.

10. Publish the template.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 37

The following screenshot shows a typical search results page template:

6.6.2 Adding a Search box to Pages

To add a search box to the pages of your publication.

1. Create a Search Component widget.

2. On the General tab, set Title to a name of your choice (Search Box, for example).

3. On the General tab, set Component to Search Box.

4. On the Search Box tab, set Target section to point to the search results page you have created
(see section 6.6.1). If required, set other fields on this tab as well.

5. Publish the widget.

6. Open your config.default template.

7. Drag your new search box template into the template (usually into the Header or Outer area).

8. Publish the template.

Adding your search box to the config.default means that it will appear on every page of your
publication. Should you not want this, you would need to add it to a different template or templates.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 38

6.7 Load Content In-line
The Widget Framework supports in-line loading of content items. What this means is that when a user
clicks on a link (for example, a teaser link on a section page), then instead of a new page being loaded,
the content item referenced by the teaser is loaded into an area on the current page.

In order to achieve this behavior you need to do two things:

• Configure a Teaser or Teaser view widget to perform in-line loading instead of normal linking.
You do this using the widget's Link settings, which you will find on its Default tab. See The
Default Tab.

• Create one or more config.inline.article templates for displaying the in-line content. See
section 2.2.1.1 for further information.

6.8 Enable/Disable Profiling
The Escenic Content Engine has a JSP profiling facility that can be useful for tuning purposes.
Profiling is not enabled by default Widget Framework publications because it carries a small
performance penalty (less than 1%).

You can turn on profiling by setting the following section parameter (usually in the root section of your
publication):

jsp.statistics=on

You can turn it off again for part of a publication by setting it to off in a particular section:

jsp.statistics=off

6.9 Display "Mega-Dropdown" Using Menu Pane Group
Displaying a menu directly in a Menu Pane group enables more complex menu layouts than using a
Menu widget. You can easily create a menu containing "mega-dropdown" panes with complex multi-
column layouts.

To display a menu in this way, add a Menu Pane group to your template. In the Menu Pane's group
options set the following fields:

Reference
Set this option to Sections in menu.

Menu name
Enter the name of a menu you have created for this publication using the Content Engine's
Menu Editor plug-in.

You can now add groups, areas and widgets to the Menu Pane group to define the layout of the drop-
down pane you want to be shown for the sections in menu. You can use all the same components that
you would use when creating a section page layout: Data Sources, Teaser widgets and so on. When the
user selects a section from the menu, then the selected section is supplied to these components as the
context section, and a pane layout is created.

http://docs.escenic.com/widget-core-reference/3.4/widget_teaser_default.html
http://docs.escenic.com/widget-core-reference/3.4/widget_teaser_default.html

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 39

The drop down pane is only displayed for the sections in the menu: other elements such as articles
and links are simply rendered as links in the usual way.

Since sections in the displayed menu are rendered using the content of the Menu Pane, you cannot
use this technique to display multi-level menus: any subsections in the menu will be ignored.

6.10Use a Context Section Group
You can use a Context Section group to:

• Display content from a specific section on the current page

• Display content from multiple sections on the same page

• Display content from a content item's owning section on a content page

When used to display content from multiple sections, the Context Section group works in a similar
way to the Menu Pane group, in that it relies on a menu created using the Menu Editor plug-in. The
Context Section group, however, does not use the menu as a menu, but just as a list of sections.

To use a Context Section group, you place it in the required location on the page and then set the
following options:

Use
Set this to either Specific section, Sections in menu (to display content from multiple
sections) or Home section of context article (for use on content pages).

Section
If you set Use to Specific section then select the section you want to use as the context section

Menu name
If you set Use to Sections in menu then enter the name of a menu you have created for this
publication using the Content Engine's Menu Editor plug-in.

You can now add groups, areas and widgets to the context section group to define the layout. If you set
Use to Sections in menu, then the layout you have defined will be repeated for every section in the
menu you specified. If you set Use to either Specific section or Home section of context article
then the layout will be used only once, to display the content from either the specified section or the
current content item's home section.

Lazy loading can be applied to Context Section groups, but only to the group as a whole, not to the
individual items (groups, areas and widgets) placed inside it.

6.11Enable Editorial Teaser Layout Control
The Widget Framework is in general designed to enforce a separation of concerns between editorial
staff and publication designers, so that editorial staff have very little control over the layout and
appearance of a publication. You can, however, provide editorial staff with some limited control over
the layout of section page teasers. You can do this for teasers that are displayed by Teaser Views under
the control of either View Picker or Teaser Grid widgets.

Enabling editorial control allows editorial staff to override the following aspects of teaser display:

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 40

• The Teaser view used

• The font size used for the teaser's title and/or lead text

• Whether or not an image is displayed with the teaser

• The image aspect ratio

• The CSS style used for the teaser

Editorial staff are able to change these display parameters by setting options on the section page
groups in which they desk the teaser content items (see chapter 7 for a description of these options).

6.11.1 Editorial Control of View Picker Teasers

To enable editorial control over View Picker teasers you must:

1. Create a View Picker widget and configure it to use a data source containing a "by section page
group" query that selects content items from a Curated view section page group.

2. Ensure that the View Picker widget's Rendering mode option is set to Iterate with related
view.

3. Ensure that the View Picker widget's Disable view adjustments by editor option is not
checked.

4. Place the View Picker widget in the required location on the required section page template.

5. If you want to allow editors to select Teaser views with the Use view option (see section 7.1.1),
then you need to ensure that Allow editors to select this view is set in the required Teaser
views.

6.11.2 Editorial Control of Teaser Grid Teasers

The Teaser Grid widget is explicitly designed to give editors control over teasers. To set up a Teaser
Grid widget for use:

1. Create a Teaser Grid widget and configure it to use a data source containing a "by section page
group" query that selects content items from a Grid section page group.

2. Place the Teaser Grid widget in the required location on the required section page template.

3. Make sure that the Grid group referenced by the Teaser Grid widget's data source actually exists
(that is, either create it yourself or inform the editorial staff who control the relevant section page
that they need to create it).

4. If you want to allow editors to select Teaser views with the Use view option (see section 7.2.1),
then you need to ensure that Allow editors to select this view is set in the required Teaser
views.

6.11.3 Defining Override CSS Styles

The Teaser Style option with which editorial staff can set CSS styles (see section 7.2.1) displays a
list of predefined options. The options displayed in this list can be modified and extended by adding a
configuration file to one of your installation's Content Engine configuration layers. Each style option
is defined by two entries in the file, one to define the label displayed in the list of options and one to
specify the CSS classes that will be applied if it is selected:

options.curatedStyle.exclusive.value=well well-xs
options.curatedStyle.exclusive.label=Exclusive

http://docs.escenic.com/widget-core-reference/3.4/widget_teaserview.html
http://docs.escenic.com/widget-core-reference/3.4/widget_teaserview.html
http://docs.escenic.com/widget-core-reference/3.4/widget_teaserview.html
http://docs.escenic.com/widget-core-reference/3.4/widget_teaserview.html

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 41

Editing and deploying configuration layer properties files is more of a developer task than a
publication designer task, and the /com/escenic/framework/ui/Enumerations.properties
file that needs to be added is also used in the configuration of custom data sources, so this process is
described more fully in the Widget Framework Developer Guide, see http://docs.escenic.com/
widget-dev-guide/3.4/query_definition_enumeration_field.html.

6.12Configure Video Advertising Services
The Widget Framework supports the inclusion of advertisements in video streams from on-line
advertising services that can supply ads in the following industry-standard formats:

• VAST

• Google IMA

Currently, you can only include ads in your videos if you use JW Player as your video player, and the
only kind of ads currently supported are pre-roll ads. Pre-roll ads are advertisements that play before
a requested video is played.

You can configure the inclusion of pre-roll advertisements in videos at three different levels:

• At publication/section level, by setting the wf.media.ad.preroll.enable section parameter
on a section to true.

• At widget level, by setting the Enable pre-roll option on the Advertisement tab of a Media
widget, Teaser widget or Teaser view

• At content item level, setting the Enable pre-roll option on the Advertisement tab of a Video
content item

In all three cases you also have to supply a Service content item. A Service content item is designed
to hold the URL of an external service such as an advertising service. It has a field for holding a base
URL, plus an array of fields for holding parameter names and values, from which a complete URL
including a query string can be constructed. For a full description, see section 6.12.1. How you supply
the service content item varies as follows:

• At publication/section level you specify the ID of the required Service content item by setting the
wf.media.ad.preroll.service.id section parameter. The ID of a content item is displayed
in the Content Info panel if you open it in Content Studio.

• At widget and content item level you simply drop the required Service content item into the Pre-
roll ad relation on the widget's or content item's Advertisement tab

You can configure pre-roll inclusion at several of the above level. If settings conflict, then the most
specific level wins: content item settings override widget settings and widget settings override section
settings.

6.12.1 Defining a Service

A Service content item contains the following fields:

Title
The name of the service.

http://docs.escenic.com/widget-dev-guide/3.4/query_definition_enumeration_field.html
http://docs.escenic.com/widget-dev-guide/3.4/query_definition_enumeration_field.html
http://www.jwplayer.com/

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 42

Service type
The type of service. Currently you can specify the following values:

VAST
Select this for ad services that supply ads in the VAST (Video Ad Serving Template)
format.

Google IMA
Select this for ad services that supply ads using (Google Interactive Media Ads) APIs.

Base URL
The base URL of the service (that is the URL without any parameters)

Parameters
An array of parameter settings for the service. Add the parameters required by the service you
are configuring. They are all assembled into a query string and appended to the Base URL to
create a complete service request.

Name
The name of a parameter required by the service you are configuring.

Value
The value to be assigned to this parameter. You can specify this value using a mixture of
literal text and JSTL expressions that will be replaced with dynamic values. Note that in
addition to the usual ${section} and ${article} objects, you also have access to the
following special context objects:

${sectionParams}
This object offers a shorthand means of accessing section parameters.
You can access a section parameter called x.y, for example, with
the expression ${sectionParams.x.y}. This is equivalent to
${section.parameters['x.y']}.

${mediaContent}
This object represents the video content item to be displayed.

Fallback
A fallback value to be assigned to this parameter if Value evaluates to an empty string.

Encode
Check this option if you want the value you have specified to be URL-encoded.

It also contains a Base Service relation on which you can drop another Service content item: the
current Service will then inherit the base Service's settings. Local settings override inherited settings.
This also applies to the contents of the Parameters array: a local parameter setting overrides an
inherited parameter with the same name.

This inheritance mechanism makes it easy to create a set of similar Services that all inherit from the
same base Service but have slightly different parameter settings.

http://www.iab.net/vast
https://developers.google.com/interactive-media-ads/

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 43

7 Editorial Layout Control

The Widget Framework is in general designed to enforce a separation of concerns between editorial
staff and publication designers: editorial staff are responsible for content and organisation: designers
are responsible for layout and functionality. For some organizations, however, this separation can be
too strict, and there is a requirement to provide editorial staff some control over layout. This chapter
describes the layout controls the Widget Framework can make available to editorial staff.

The functionality described here is available to editors when editing section pages. It mostly needs to
be enabled by designers, however, and is only useful if designers have configured other components to
make use of it.

7.1 Using Curated View Groups
Curated View is a top-level group type that you can add to section pages by right-clicking on the
Content Area root and selecting Insert > Insert new Curated view. You can then drag content
items into the group in the usual way. What is special about the Curated view group is that you can
then control the appearance of the teasers generated for these content items by setting various display
options (see section 7.1.1).

There no point adding a Curated view group to a section page unless you know that your designers
have configured a View Picker widget to display the content items that you add to it. Your usage of
Curated view groups must be co-ordinated with the designers.

7.1.1 Curated View Options

If you select a Curated View group in a section page editor, then the following options are displayed
on the right:

Use view
Use this option to select the Teaser view that will be used for all teasers in the group. Start
typing and then select the required teaser view from the displayed options. The view you select is
used to override the default Teaser view(s) configured by the publication designer.

Image
Use this option to select the image version to be used for any images in the teasers in the group.
You can also suppress the display of images by selecting the Hide option.

Teaser style
Select a style to be applied to all teasers in the group.

Title size
Select a font size to be applied to the titles of all teasers in the group.

Lead text size
Select a font size to be applied to the lead text of all teasers in the group.

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 44

7.2 Using Grid Groups
Grid is a top-level group type that you can add to section pages by right-clicking on the Content
Area root and selecting Insert > Insert new Grid. Most of the groups that you can add to section
pages in a standard Widget Framework publication are simple groups that cannot be subdivided.
Grid groups, however, have a standard set of subgroups representing various column arrangements.
You can use them to control how teasers are to be laid out on a page or part of a page. First you
subdivide the Grid group by inserting one or more subgroups, and then you drag content items into the
subgroups, not the the root Grid.

There no point adding a Grid group to a section page unless you know that your designers have
configured a Teaser Grid widget to display the content items that you add to it. Your usage of Grid
groups must be co-ordinated with the designers.

You can insert the following subgroups into a Grid group by right-clicking on the group, then selecting
Insert > Insert new [group]:

Row
A container for Column groups. You can add as many Rows as you like to a Grid. Do not add
content items directly to a Row. A number of options are displayed on the right, which you can
use to override default teaser formats (see section 7.2.1).

Column
Insert into a Row group. You can add as many Columns as you like to a Row. You can then either
fill the columns with content items as required or subdivide it further. A Column group has a
Width option that you can use to control column width. The total width of all the Columns in a
Row should not exceed 12.

Two column
A predefined row containing two columns. Any content items you add to a Two column group
are divided between the two columns: the first half are put in column 1, and the second half
in column 2. If you add an odd number of content items, then column 1 will get the extra one.
A number of options are displayed on the right, which you can use to override default teaser
formats and control column widths (see section 7.2.1).

Three column
A predefined row containing three columns. Any content items you add to a Three column group
are divided between the three columns: the first third are put in column 1, the second third in
column 2 and the remainder in column 3. A number of options are displayed on the right, which
you can use to override default teaser formats and control column widths (see section 7.2.1).

Two column (1+N)
A predefined row containing two columns. It works the same way as the Two column group
except that only the first content item is allocated to the first column, and all the remaining
content items are allocated to the second column. A number of options are displayed on the
right, which you can use to override default teaser formats and control column widths (see
section 7.2.1).

Two column (N+1)
A predefined row containing two columns. It works the same way as the Two column group
except that only the last content item is allocated to the first column, and all the remaining
content items are allocated to the second column. A number of options are displayed on the
right, which you can use to override default teaser formats and control column widths (see
section 7.2.1).

Escenic Widget Framework User Guide

Copyright © 2010-2015 Escenic AS Page 45

7.2.1 Grid Options

If you select a Row, Two column, Three column, Two column (1+N) or Two column (N+1)
group in a section page editor, then the following options are displayed on the right:

Use view
Use this option to select the Teaser view that will be used for all teasers in the group. Start
typing and then select the required teaser view from the displayed options. The view you select is
used to override the default Teaser view(s) configured by the publication designer.

Image
Use this option to select the image version to be used for any images in the teasers in the group.
You can also suppress the display of images by selecting the Hide option.

Teaser style
Select a style to be applied to all teasers in the group.

Title size
Select a font size to be applied to the titles of all teasers in the group.

Lead text size
Select a font size to be applied to the lead text of all teasers in the group.

1st column size
Select the width to be used for the first column in a two or three column group. Remember that
the total width available for all columns across the total page width is 12.

2nd column size
Select the width to be used for the second column in a three column group. Remember that the
total width available for all columns across the total page width is 12.

